Способы промывки систем отопления. Гидрохимическая промывка

А.В. Мараховский, соискатель Московского государственного машиностроительного университета (МАМИ), главный инженер, ООО «Асгард Сервис», г. Москва;
Е.И. Трофимова, соискатель МАМИ, ведущий инженер, ООО «Объединенная сервисная компания», г. Магнитогорск

Введение

В декабре 2014 г. в одной из котельных пос. Власиха Московской обл. проводилась гидрохимическая промывка и очистка внутренней поверхности котловых труб котла ПТВМ-30М для удаления с поверхностей нагрева образовавшихся отложений. Котел является одним из двух основных источников теплоснабжения для получения горячей воды температурой до 150 О С, которая используется для систем отопления, вентиляции и ГВС объектов промышленного и бытового назначения поселка. Решение о проведении данной технологической операции было принято из- за очевидной потери тепловой мощности котла и вероятности остаться без достаточного резерва перед наступающей зимой. Взяв во внимание следующие данные:

■ повышенный расход газа;

■ увеличенный перепад давления по сравнению с техническими характеристиками (3,2 кг/см 2);

■ визуальный осмотр вырезанных труб после замены;

■ снижение КПД котла ПТВМ-30М,

было принято комиссией решение о проведении гидрохимической промывки внутренних поверхностей котла.

Химическая очистка проводится, как правило, в летний период, когда отопительный сезон закончен, но в исключительных случаях - при нарушении безопасности работы котла - она может выполняться и зимой. При выполнении данных работ необходимо соблюдать соответствующие правила и требования безопасности при работах с кислотами и щелочами, а также проводить целевой инструктаж перед началом работ. Основные моменты по безопасности: персонал должен быть аттестован по ОТ и ТБ, иметь допуск к работам (оформленный наряд-допуск) и средства индивидуальной защиты, а рабочее место должно соответствовать требованиям безопасности при проведении указанных работ.

При ведении работ должен быть обеспечен полный контроль за процессом, а по окончании необходима нейтрализация реагента.

Технология и порядок проведения работ

На основании опыта проведения эксплуатационных химических очисток водогрейных котлов, накопленного в последние годы, была разработана программа проведения гидрохимической промывки и очистки внутренней поверхности котловых труб котла ПТВМ-30М, которая определяет общий порядок и условия подготовки и проведения эксплуатационной химической очистки котла.

Схема гидрохимической очистки должна обеспечивать эффективность очистки поверхностей нагрева, полноту удаления растворов, шлама и взвеси из котла. Работа проводилась в три этапа: щелочение, кислотная промывка, щелочение. Для циркуляции раствора использовалась передвижная установка с перекачивающим насосом с расходом 240 м 3 /ч и напором 40 м и промежуточная емкость. Подключение к котлу произвели через нижние дренажи в коллекторах Ду 50 и через верхние воздухоотводчики (рисунок).

Рисунок. Котел ПТВМ-30М с подсоединенной установкой для промывки.

В качестве моющего реагента использовалась ингибированная соляная кислота, что позволило предотвратить негативное воздействие на металл труб, т.к. ингибитор имеет защитную функцию при промывке. Выбор реагента был сделан благодаря высоким моющим свойствам HCI, позволяющим очистить практически от любого типа отложений поверхности нагрева даже с высокой удельной загрязненностью, а также из-за доступности на рынке и невысокой цены.

В зависимости от количества отложений очистку ведут в одну (при загрязненности до 1,5 кг/м 2) или в две стадии (при загрязненности более 1,5 кг/м 2) раствором с концентрацией от 4 до 7%. При загрязненности выше 1,5 кг/м 2 или при наличии в отложениях кремнекислоты или сульфатов более 10% рекомендуется проведение щелочения. Щелочение проводят между кислотными стадиями раствором едкого натра или смеси его с кальцинированной содой. Добавление к едкому натру кальцинированной соды в количестве 1-2% повышает эффект разрыхления и удаления сульфатных отложений.

При наличии отложений в количестве 3-4 кг/м 2 очистка поверхностей нагрева может потребовать последовательного чередования нескольких кислотных и щелочных обработок.

Для обеспечения качественной очистки котла необходимо произвести расчет количества реагентов, чтобы хватило с учетом добавления его при необходимости. Дело в том, что основным критерием кислотности является уровень pH, который при прохождении реакции стремится к нейтральному pH 6-8, и возникает необходимость добавлять реагент в процессе очистки, чтобы понизить его до значений pH 1,5-2. Расход реагентов рассчитывается по составу отложений, удельной загрязненности отдельных участков поверхностей нагрева, определяемых по образцам труб, вырезанных до химической очистки, а также из расчета получения необходимой концентрации реагента в промывочном растворе.

Удельная загрязненность поверхности нагрева находится как соотношение массы отложений, снятых с поверхности образца трубы, к площади, с которой эти отложения были удалены (г/м 2).

Количество реагента при отмывке железоокисных отложений определяется по формуле (1):

где Q - количество, т; V- объем контура очистки, м 3 (сумма объемов котла, бака, трубопроводов); С р - требуемая концентрация реагента в моющем растворе, %; γ - удельная масса моющего раствора, т/м 3 (принимаемая равной 1 т/м 3); α - коэффициент запаса, равный 1,1-1,2; С исх - содержание реагента в техническом продукте, %.

Количество реагента для удаления карбонатных отложений определяется по формуле (2):

где Q - количество реагента, т; А- количество отложений в котле, т; n - количество 100%-й кислоты, необходимое для растворения 1 т отложений, т/т (при растворении карбонатных отложений для соляной кислоты n=1,2, для НМК n=1,8, для сульфаминовой кислоты n=1,94); С исх - содержание кислоты в техническом продукте, %.

Количество отложений, подлежащих удалению при очистке, определяется по формуле (3): A=g*f*10 -6 , (3)

где А - количество отложений, т; g - удельная загрязненность поверхностей нагрева, г/м 2 ; f - поверхность, подлежащая очистке, м 2 .

В нашем случае получилось порядка 2500 кг 32% кислоты, 350 л NaOH 40% и 300 кг кальцинированной соды, т.к. количество отложений было порядка 1200 г/м 2 в среднем и объем котла составлял 14 м 3 . После проведения работ у нас осталось неизрасходованными порядка 12 канистр по 24 кг кислоты.

Очистку котлов по циркуляционной схеме следует проводить со скоростями движения моющего раствора и воды не менее 0,1 м/с (т.к. при этом обеспечивается равномерное распределение моющего реагента в трубах поверхностей нагрева и постоянное поступление к поверхности труб свежего раствора), а водные отмывки необходимо выполнять на сброс со скоростями не менее 1,0-1,5 м/с.

Поэтому необходимо подобрать насос, предназначенный для прокачки моющего раствора по контуру очистки, который должен обеспечивать аналогичную скорость движения. Выбор этого насоса производится по формуле (4):

Q=(0,15 ÷0,2)*S*3600, (4)

где Q - подача насоса, м 3 /ч; 0,15^0,2 - минимальная скорость движения раствора, м/с; S - площадь максимального поперечного сечения водяного тракта котла, м 2 ; 3600 - переводной коэффициент.

При подборе насоса для циркуляции реагента должны учитываться конструктивные особенности котла, местонахождение конвективных пакетов в водяном тракте котла и наличие большого количества горизонтальных труб малого диаметра с многократными гибами на 90 и 180 О. В результате расчета был выбран насос производительностью 500-4000 л/мин (240 м 3 /ч) и напором 25-40 м.

Отработанные моющие растворы и первые порции воды при водных отмывках должны быть утилизированы или нейтрализованы. Отвод отработанного реагента проводится после достижения на выходе из котла значения рН, равного 6,5-8,5 (степень кислотности раствора) при нейтрализации.

Согласно утвержденной программе по промывке, утилизация производилась в существующий на котельной водоотвод после нейтрализации. Процесс происходил по следующим этапам: подготовка необходимого количества кальцинированной соды; контроль уровня pH при помощи рН-метра, постепенное добавление соды в промежуточную емкость до значений pH 6-8 при включенном насосе промывочной станции. Процесс нейтрализации продолжался около двух часов, уровень кислотности удалость поднять с 2 до 7. Сливали раствор порционно по 20 мин с интервалами по 10 мин через 2 спускника Ду 25 в течение 2 ч во избежание концентрации раствора на очистных сооружениях. Добавление соды производили, предварительно размешав ее с водой в ведре для более качественного взаимодействия сред. Израсходовали порядка 100 кг соды на объем 14-15 м 3 . Утилизация щелочного реагента происходила путем разбавления его сырой водой из водопровода до необходимых значений кислотности pH 6-8.

При очистке котла ПТВМ-30М особое внимание необходимо обратить на организацию отвода в общий контур моющего раствора из верхних коллекторов панелей экранов, т.к. направление движения раствора имеет многократные изменения.

Работа по очистке котла заняла порядка 34 ч, из них 10 ч - щелочение (2 этапа), 12 ч - кислотная обработка, 4 ч - нейтрализация, 8 ч - подготовка, подключение, сбор и опрессовка. Реакция проходила с умеренной интенсивностью, реагент HCI добавляли два раза по 150 кг, с интервалом через 1,5 ч с начала промывки до состояния стабилизации уровня pH. Результатом работы стал приемлемый перепад давления после химической обработки: 2,7 кг/см 2 (по сравнению с паспортным 2,5 кг/см 2). Рабочие параметры котла пришли в норму, хотя и не совпали с паспортными.

Контрольную вырезку после работ делать не стали, т.к. было проведено испытание образца: деформированный кусок экранной трубы с данного котла, который был покрыт отложениями, поместили перед промывкой в промежуточную емкость системы промывки, в которой постоянно находился рабочий раствор. После повторного щелочения визуальный осмотр трубы показал, что отложения растворились и вымылись циркулирующим раствором. Однако, после ремонтного сезона 2015 г., выяснилось, что предыдущий ремонт по замене конвективных труб принес ряд проблем, а именно: при вскрытии обнаружилось, что большое количество замененных труб оказались с уменьшенным сечением за счет застывшего металла на сечении. Проблема в том, что при подгонке труб к коллекторам пользовались электросваркой и газорезкой и не обрабатывали торцы шлифовальным инструментом (металл, который стекал при резке, застывал около края и уменьшал рабочее сечение трубы), что влияет на гидравлическое сопротивление оборудования.

Выводы

В процессе эксплуатации теплоэнергетического оборудования следует своевременно проводить обслуживание и ремонт парка, т.к. откладывание и задержки по сервису могут привести к аварийным ситуациям в период пиковых нагрузок. Необходимо проводить качественный мониторинг параметров, начиная с ввода в эксплуатацию, формировать карту пиковых значений, следить за водно-химическим режимом котельных. При выполнении ремонтных работ проверять квалификацию персонала, контролировать выполнение всех этапов работ и соблюдение технологии операций.

Литература

1. РД 34.37.402-96. Типовая инструкция по эксплуатационным химическим очисткам водогрейных котлов.

2. Программа проведения гидрохимической промывки и очистки внутренней поверхности котловых труб одного котла ПТВМ - 30М котельной № 3 городского округа Власиха.

Отопительные системы на сегодняшний день прочно связаны с нашей жизнью. Ни офисы, ни предприятия, ни жилые дома не обходятся без них. Поэтому требования, предъявляемые к ним, постоянно растут, а в связи с растущими во всем мире тенденциями, к экономии тепловых ресурсов эти требования становятся еще жестче. Долговечности, надежности и хороших теплообменных свойств можно достичь, если вовремя избавляться от накипи и других отложений, засоряющих системы отопления. Выполненные своевременно профилактические работы по очистке и гидрохимическая промывка системы отопления дают возможность избежать загрязнений и выхода ее из строя. Накипь, откладывающаяся на стенках батарей, труб и теплообменников, является причиной многочисленных поломок и способствует более быстрому механическому износу труб, значительно уменьшает теплоотдачу систем отопления. Так накипь толщиной всего до 1мм снижает уровень теплоотдачи примерно на 15%. Поэтому с течением времени затраты на потребляемое топливо возрастают, а эффективность работы системы отопления падает. Накипные и другие осадки препятствуют тепловому потоку и создают значительное термическое сопротивление, в результате чего теплопроводность и температура системы уменьшаются, поэтому в значительной степени возрастают траты на топливо. Так теплопроводность любой накипи более чем в 40 раз меньше теплопроводности металла.

Непосредственно перед осуществлением необходимо провести диагностику и установить точный химический состав и характер накипи. Специалисты, исходя из полученных результатов, оптимально подберут метод и оборудование для промывки системы отопления, а после окончания процедуры обязательно проведут антикоррозийную обработку трубопровода для максимально долгого предотвращения появления накипи и отложений вновь.

Существует несколько технологий : гидрохимическая, гидродинамическая, пневмогидроимульсионная. Каждая из них имеет свои положительные и отрицательные стороны. Химическая промывка системы отопления способствует растворению и выведению из системы твердых фракционных отложений за счет применения особых химических препаратов. Такая очистка будет эффективной для промывки системы отопления, где нет илистых отложений. В систему отопления закачивается специальный химический состав, который готовится в зависимости от характера отложений и забитости всей системы. Специалисты выбирают необходимые реагенты и готовят раствор необходимой концентрации. Раствор растворяет эти отложения и одновременно происходит пассивация металлических деталей изнутри. При этом на поверхности металла образуется оксидная пленка, которая препятствует коррозии. Принудительную циркуляцию химического раствора поддерживают в течение всего рассчитанного времени для того чтобы растворились вся накипь и осадки. После удаления оставшегося активного химического вещества из раствора обязательно осуществляют продувку промытой системы воздухом и промывку ее водой от очистительного раствора и отставших отложений.

Гидрохимическая промывка системы отопления чаще всего применяется для частных домов, проводиться она может в любое время года и не требует обязательного слива системы отопления. Необходимо просто врезать в действующую систему отопления насосное и емкостное оборудование и добавить химический раствор в теплоноситель. Таким образом, метод гидрохимической очистки, используя органические и неорганические растворы с высокими промывочными свойствами, позволяет удалить из системы отопления различные отложения. Такая промывка очень эффективна для труб, но приборы отопления могут очиститься не полностью, поэтому выгоднее проводить комплексную очистку - затраты практически те же, а эффективность выше.

В результате своевременной и грамотно проведенной гидрохимической промывки, температура горячей воды в системе значительно увеличивается, расходы топлива сокращаются, уменьшаются тепловые потери, а следовательно при тех же затратах повышается температура в помещении. Большим плюсом гидрохимической промывки считают, что процесс проводится очень быстро при минимальных неудобствах для жильцов. Гидрохимическая промывка водонагревательного оборудования и трубопроводов проводится только разрешенными , которые имеют все необходимые сертификаты и абсолютно безопасны для оборудования, людей и окружающей среды.

Ничто так не влияет на качество воды, транспортируемой по трубопроводам, как состояние самих труб. Грязные и ржавые трубы водоснабжения — общероссийская проблема. Замена стальных труб на трубы из альтернативных материалов помогает лишь отчасти. Но не только грязные трубы могут быть источником загрязнения воды из крана. Владельцы частных домов, коттеджей,а также пансионаты, дома отдыха, торгово-офисные центры и т.д., получающие воду из собственных скважин, очень часто жалуются на воду из кранов, хотя ее качество сразу после фильтров подтверждается дополнительными анализами.

Причины этого неприятного явления достаточно разнообразны, но чаще всего это:

  • малый водоразбор (застой воды в трубах), или слишком большой разбор, когда водоочистное оборудование не справляется с фильтрацией и недостаточно очищенная вода поступает в краны,
  • размножение сульфатредуцирующих бактерий, выделяющих сероводород,
  • загрязнение бойлера горячего водоснабжения отложениями, смываемыми при циркуляции с внутренних поверхностей трубопровода и полотенцесушителей, разложение магниевого анода. Отложения накапливаются на дне и стенках бойлера, что достаточно быстро приводит к интенсивному размножению термотолерантных бактерий, и, как следствие, интенсивному запаху сероводорода,
  • если водоочистное оборудование устанавливается на трубопроводную систему, включающую бойлер ГВС, которая уже эксплуатировалась(даже короткое время) неочищенной водой.

Грязные, ржавые трубы, забитые накипью теплообменники и котлы — не только источник загрязнения воды, но и причина нарушения гидравлических и тепловых режимов, так как внутреннее обрастание труб и теплообменных поверхностей влечет уменьшение проходного сечения вплоть до его полной закупорки и прекращения подачи воды на точки водоразбора или теплоразбора. В последнем случае выход один — замена труб или теплообменников, что зачастую сопряжено с частичным разрушением и последующим восстановлением строительных конструкций и большие финансовые затраты.

Отложения в трубах и теплообменниках, возникающие из-за содержащихся в воде солей кальция и магния, железоокисные отложения, размножение бактерий - наиболее распространенная проблема, с которой приходится сталкиваться в быту и в промышленности. Накипь создает большое термическое сопротивление тепловому потоку, что ведет к снижению температуры теплоносителя и уменьшению теплопроводности системы отопления, понижению температуры ГВС. Это значит, что уменьшается теплоотдача и пропускная способность труб. Температура как в помещениях, так и в трубах горячего водоснабжения падает, а для ее увеличения приходится увеличивать затраты топлива на котельных установках, а в частных домах увеличивается расход газа на подогрев воды.

Эффективно удалить различные загрязнения внутренних поверхностей и восстановить пропускную способность трубопроводов и теплопередачу без нарушения целостности трубопроводной системы и водонагревательного оборудования позволяет метод гидрохимической промывки с помощью специальных средств.

Промывка тепло-водонагревательного оборудования и трубопроводов питьевого и хозяйственного назначения проводится только разрешенными для конкретного использования реагентами, сертифицированными СанЭпиднадзором РФ, абсолютно безопасны для целостности оборудования (прокладки, краны и т.д.), не влияют на материал трубопроводов (сталь, оцинковка, металлопласт, пластик), т.к. размывают только отложения внутри труб.

К несомненным достоинствам метода гидрохимических промывок относится быстрота, с которой получается положительный результат при минимальных неудобствах для владельцев частных домов и коттеджей, т.к. за один цикл проводится промывка контуров горячего, холодного водоснабжения и водонагревательного оборудования (бойлеров и котлов ГВС).

Работы по промывке трубопроводов и водонагревательного оборудования проводятся без слива системы (что особенно важно для отопления), и вне зависимости от времени года.

ВАЖНО ЗНАТЬ:

Отопительные системы, в которых в качестве теплоносителя залит какой-либо антифриз - при замене антифриза на воду система отопления и котел в обязательном порядке должны быть промыты с применением специальных средств.

Если не сделать качественной промывки, можно столкнуться с таким явлением, как «шум» в котле и отопительной системе- это остатки антифриза пенятся и вызывают эти явления. В некоторых случаях происходит аварийное отключение котла(как правило, в самый «неподходящий момент»).

Для снижения последствий кислородной коррозии и отложений солей жесткости на теплопередающих поверхностях в системе отопления рекомендуем использовать ингибиторы коррозии и отложений солей жесткости.

Использование в качестве теплоносителя умягченной воды не избавляет от такой проблемы, как кислородная коррозия, поэтому в таких системах отопления также в качестве профилактики коррозии необходимо добавлять ингибиторы коррозии. Количество ингибитора зависит от объема системы, но в среднем достаточно 5% на весь объем системы, один раз в год добавляется порядка 1-2% средства (это зависит от объема подпитки системы отопления в течении года).

Системы горячего
и холодного водоснабжения

Признаки загрязнения воды:


Причины загрязнения:

  • Недостаточная или
    отсутствующая водоподготовка
  • Отложения в трубопроводах солей
    кальция, магня, железа
  • Размножение бактерий внутри трубопроводов
  • Коррозия трубопроводов
Система отопления

Признаки снижения эффективности
работы отопительной системы:


Причины:

  • Отложения внутри труб и теплового оборудования


Важно! Перед установкой или сразу после установки нового водоподготовительного оборудования рекомендуется промыть систему трубопроводов ГВС, ХВС и бойлер для исключения появления неприятных запахов в воде

Для решения проблем, с которыми сталкиваются пользователи водонагревательного оборудования при его эксплуатации мы предлагаем:

1. Анализ воды (включая экспресс-анализ на месте)

2. Комплексное обследование систем горячего и холодного водоснабжения,
отопления и имеющейся системы водоподготовки
3. Подбор необходимых реагентов для промывки (в зависимости от характера отложений и материала труб)
4. Промывка системы, с гарантией эффективного удаления отложений
5. Разработка рекомендации по увеличению эффективности водоподготовки
6. Абонентское обслуживание (постоянный контроль за состоянием систем
и своевременное устранение проблем).
7. Защита трубопроводов и водонагревательного оборудования системы питьевого водоснабжения от коррозии и накипи.
8. Защита трубопроводов и водонагревательного оборудования систем отопления, охлаждения и кондиционирования от коррозии и накипи.
9. Дезинфекция трубопроводов.
10. Консультации по вопросам подбора оборудования и реагентов для водоочистки.



Химическая (гидрохимическая) очистка трубопроводов гидравлических систем различного назначения

Основной причиной сбоев в работе гидравлических систем являются разнообразные механические примеси в масле (и других рабочих жидкостях), которые выводят из строя золотники (заклинивание или постепенное истирание рабочих поверхностей). Поэтому в процессе эксплуатации гидравлической системы чистота масла - основное условие бесперебойной работы. Хотя процесс эксплуатации гидравлической системы и предполагает ее периодические остановы и вскрытия, их количество зависит от чистоты труб на стадии ввода в эксплуатацию.

Существующий до сего времени и довольно распространенный способ очистки внутренних поверхностей труб - так называемое «травление» труб в ванне с кислотой.

Однако такой способ очистки труб не дает стопроцентной гарантии чистоты внутренних поверхностей после монтажа системы, т.к. в процессе монтажа происходит неизбежное загрязнение как механическими примесями, так и вторичной коррозией(особенно для черных сталей).

Степень чистоты труб будет гораздо эффективнее, если проводить предпусковую очистку уже смонтированной системы, выделяя замкнутые контуры для создания циркуляции моющего реагента.

Химическая (гидрохимическая) очистка гидравлических систем методом циркуляции по выделенным контурам позволяет:

  • удалить коррозионные и механические отложения;
  • обезжирить внутренние поверхности труб;
  • удалить слой ингибитора кислородной коррозии (при необходимости);
  • провести пассивирование внутренних поверхностей труб.

Продолжительность работ по гидрохимической очистке, подбор и порядок применения реагентов, количество расходных материалов, трудоемкость зависят от степени коррозионного поражения труб, общего объема гидросистемы, количества и конфигурации циркуляционных контуров.

Группа компаний WATER.RU проводит гидрохимические очистки разнообразного промышленного оборудования и трубопроводов различного назначения:

В декабре месяце 2014 г. в одной из котельных поселка Власиха Московской обл. проводилась гидрохимическая промывка и очистка внутренней поверхности котловых труб котла ПТВМ–30М для удаления с поверхностей нагрева образовавшихся отложений. Котел является одним из двух основных источников теплоснабжения для получения горячей воды температурой до 150 °С, которая используется для систем отопления, вентиляции и ГВС объектов промышленного и бытового назначения поселка. Решение о проведении данной технологической операции было принято из-за очевидной потери тепловой мощности котла и вероятности остаться без достаточного резерва перед наступающей зимой. Взяв во внимание следующие данные:

  • повышенный расход газа;
  • увеличенный перепад давления по сравнению с техническими характеристиками (3,2; 2,5 кг/см2);
  • визуальный осмотр вырезанных труб после замены;
  • снижение КПД котла ПТВМ–30М.

Комиссией было принято решение о проведении гидрохимической промывки внутренних поверхностей котла.

Химическая очистка проводится, как правило, в летний период, когда отопительный сезон закончен, но в исключительных случаях – при нарушении безопасности работы котла она может выполняться и зимой. При выполнении данных работ необходимо соблюдать соответствующие правила и требования безопасности при работах с кислотами и щелочами, а также проводить целевой инструктаж перед началом работ. Основные моменты по безопасности: персонал должен быть аттестован по ОТ и ТБ, иметь допуск к работам (оформленный наряд-допуск) и средства индивидуальной защиты, а рабочее место должно соответствовать требованиям безопасности при проведении указанных работ. При ведении работ должен быть обеспечен полный контроль за процессом, а по окончании необходима нейтрализация реагента.

Технология и порядок проведения работ

На основании опыта проведения эксплуатационных химических очисток водогрейных котлов, накопленного в последние годы, была разработана программа проведения гидрохимической промывки и очистки внутренней поверхности котловых труб котла ПТВМ – 30М, которая определяет общий порядок и условия подготовки и проведения эксплуатационной химической очистки котла.

Схема гидрохимической очистки должна обеспечивать эффективность очистки поверхностей нагрева, полноту удаления растворов, шлама и взвеси из котла. Работа проводилась в три этапа: щелочение, кислотная промывка, щелочение. Для циркуляции раствора использовалась передвижная установка с перекачивающим насосом с расходом 240 м3/ч и напором 40 м и промежуточная емкость. Подключение к котлу произвели через нижние дренажи в коллекторах Ду 50 и через верхние воздухоотводчики (рисунок).

Котел ПТВМ–30М с подсоединенной установкой для промывки В качестве моющего реагента использовалась ингибированная соляная кислота, что позволило предотвратить негативное воздействие на металл труб, т.к. ингибитор имеет защитную функцию при промывке. Выбор реагента был сделан благодаря высокими моющими свойствами HCI, позволяющими очистить практически от любого типа отложений поверхности нагрева даже с высокой удельной загрязненностью, а также доступностью на рынке и невысокой ценой.

В зависимости от количества отложений очистку ведут в одну (при загрязненности до 1,5 кг/м2) или в две стадии (при загрязненности более 1,5 кг/м2) раствором с концентрацией от 4 до 7%. При загрязненности выше 1,5 кг/м2 или при наличии в отложениях кремнекислоты или сульфатов более 10% рекомендуется проведение щелочения. Щелочение проводят между кислотными стадиями раствором едкого натра или смеси его с кальцинированной содой. Добавление к едкому натру кальцинированной соды в количестве 1-2% повышает эффект разрыхления и удаления сульфатных отложений.

При наличии отложений в количестве 3-4 кг/м2 очистка поверхностей нагрева может потребовать последовательного чередования нескольких кислотных и щелочных обработок.

Для обеспечения качественной очистки котланеобходимо произвести расчет количества реагентов, что бы хватило с учетом добавления его при необходимости. Дело в том, что основным критерием кислотности является уровень pH, который при прохождении реакции стремится к нейтральному pH 6-8, и возникает необходимость добавлять реагент в процессе очистки, что бы понизить его до значений pH 1,5-2. Расход реагентов рассчитывается по составу отложений, удельной загрязненности отдельных участков поверхностей нагрева, определяемых, по образцам труб, вырезанных до химической очистки, а также из расчета получения необходимой концентрации реагента в промывочном растворе.

Удельная загрязненность поверхности нагрева находится как соотношение массы отложений, снятых с поверхности образца трубы, к площади, с которой эти отложения были удалены (г/м2).

Количество реагента при отмывке железоокисных отложений определяется по формуле (1):

  • Q – количество, т;
  • V – объем контура очистки, м3 (сумма объемов котла, бака, трубопроводов);
  • Ср – требуемая концентрация реагента в моющем растворе, %;
  • γ – удельная масса моющего раствора, т/м3 (принимаемая равной 1 т/м3);
  • α – коэффициент запаса, равный 1,1–1,2;
  • Сисх – содержание реагента в техническом продукте, %.

Количество реагента для удаления карбонатных отложений определяется по формуле (2):

  • Q – количество реагента, т;
  • А – количество отложений в котле, т;
  • n – количество 100%-ной кислоты, необходимое для растворения 1 т отложений, т/т (при растворении карбонатных отложений для соляной кислоты п=1,2, для НМК n=1,8, для сульфаминовой кислоты n=1,94);
  • Сисх – содержание кислоты в техническом продукте, %.

Количество отложений, подлежащих удалению при очистке, определяется по формуле (3):

  • А – количество отложений, т;
  • g – удельная загрязненность поверхностей нагрева, г/м2;
  • f – поверхность, подлежащая очистке, м2.

В нашем случае получилось порядка 2500 кг 32% кислоты, 350 л NaOH 40% и 300 кг кальцинированной соды, т.к. количество отложений было порядка 1,2 кг/м2 в среднем и объем котла составлял 14 м3. После проведения работ у нас осталось не израсходованными порядка 12 канистр по 24 кг кислоты.

Очистку котлов по циркуляционной схеме следует проводить со скоростями движения моющего раствора и воды не менее 0,1 м/с (т.к. при этом обеспечивается равномерное распределение моющего реагента в трубах поверхностей нагрева и постоянное поступление к поверхности труб свежего раствора), а водные отмывки необходимо выполнять на сброс со скоростями не менее 1,0-1,5 м/с.

Поэтому необходимо подобрать насос, предназначенный для прокачки моющего раствора по контуру очистки, который должен обеспечивать аналогичную скорость движения. Выбор этого насоса производится по формуле (4):

  • Q – подача насоса, м3/ч;
  • 0,15÷0,2 – минимальная скорость движения раствора, м/с;
  • S – площадь максимального поперечного сечения водяного тракта котла, м2;
  • 3600 – переводной коэффициент.

При подборе насоса для циркуляции реагентадолжны учитываться конструктивные особенности котла, местонахождение конвективных пакетов в водяном тракте котла и наличие большого количества горизонтальных труб малого диаметра с многократными гибами на 90 и 180О. В результате расчета был выбран насос производительностью 500-4000 л/мин (240 м3/ч) и напором 25-40 м.

Отработанные моющие растворы и первые порции воды при водных отмывках должны быть утилизированы или нейтрализованы. Отвод отработанного реагента проводится после достижения на выходе из котла значения рН, равного 6,5-8,5 (степень кислотности раствора) при нейтрализации.

Согласно утвержденной программе по промывке, утилизация производилась в существующий на котельной водоотвод после нейтрализации. Процесс происходил по следующим этапам: подготовка необходимого количества кальцинированной соды; контроль уровня pH при помощи pH-метра, постепенное добавление соды в промежуточную емкость до значений pH 6-8 при включенном насосе промывочной станции. Процесс нейтрализации продолжался около двух часов, уровень кислотности удалость поднять с 2 до 7. Сливали раствор порционно по 20 мин с интервалами по 10 мин через 2 спускника Ду 25 в течение 2 ч во избежание концентрации раствора на очистных сооружениях. Добавление соды производили, предварительно размешав ее с водой в ведре для более качественного взаимодействия сред. Израсходовали порядка 100 кг соды на объем 14-15 м3. Утилизация щелочного реагента происходила путем разбавления его сырой водой из водопровода до необходимых значений кислотности pH 6-8.

При очистке котла ПТВМ-30 особое внимание необходимо обратить на организацию отвода в общий контур моющего раствора из верхних коллекторов панелей экранов, так как направление движения раствора имеет многократные изменения.

Работа по очистке котла заняла порядка 34 ч, из них 10 ч – щелочение (2 этапа), 12 ч – кислотная обработка, 4 ч – нейтрализация, 8 ч – подготовка, подключение, сбор и опрессовка. Реакция проходила с умеренной интенсивностью, реагент HCI добавляли два раза по 150 кг, c интервалом через 1,5 ч с начала промывки до состояния стабилизации уровня pH. Результатом работы стал приемлемый перепад давления после химической обработки: 2,7 кг/см2 (по сравнению с паспортным 2,5 кг/см2). Рабочие параметры котла пришли в норму, хотя и не совпали с паспортными.

Контрольную вырезку после работ делать не стали, т.к. было проведено испытание образца: деформированный кусок экранной трубы с данного котла, который был покрыт отложениями поместили перед промывкой в промежуточную емкость системы промывки, в которой постоянно находился рабочий раствор. После повторного щелочения визуальный осмотр трубы показал, что отложения растворились и вымылись циркулирующим раствором. Однако, после ремонтного сезона 2015 г., выяснилось, что предыдущий ремонт по замене конвективных труб принес ряд проблем, а именно: при вскрытии обнаружилось, что большое количество замененных труб оказались с уменьшенным сечением за счет застывшего металла на сечении. Проблема в том, что при подгонке труб к коллекторам пользовались электросваркой и газорезкой и не обрабатывали торцы шлифовальным инструментом, металл, который стекал при резке, застывал около края и уменьшал рабочее сечение трубы, что влияет на гидравлическое сопротивление оборудования.

Выводы

В процессе эксплуатации теплоэнергетического оборудования следует своевременно проводить обслуживание и ремонт парка, т.к. откладывание и задержки по сервису могут привести к аварийным ситуациям в период пиковых нагрузок. Необходимо проводить качественный мониторинг параметров, начиная с ввода в эксплуатацию, формировать карту пиковых значений, следить за водно-химическим режимом котельных. При выполнении ремонтных работ проверять квалификацию персонала, контролировать выполнение всех этапов работ и соблюдение технологии операций.

Ничто так не влияет на качество воды, транспортируемой по трубопроводам, как состояние самих труб. Грязные и ржавые трубы водоснабжения — общероссийская проблема. Замена стальных труб на трубы из альтернативных материалов помогает лишь отчасти. Но не только грязные трубы могут быть источником загрязнения воды из крана. Владельцы частных домов, коттеджей,а также пансионаты, дома отдыха, торгово-офисные центры и т.д., получающие воду из собственных скважин, очень часто жалуются на воду из кранов, хотя ее качество сразу после фильтров подтверждается дополнительными анализами.

Причины этого неприятного явления достаточно разнообразны, но чаще всего это:

  • малый водоразбор (застой воды в трубах), или слишком большой разбор, когда водоочистное оборудование не справляется с фильтрацией и недостаточно очищенная вода поступает в краны,
  • размножение сульфатредуцирующих бактерий, выделяющих сероводород,
  • загрязнение бойлера горячего водоснабжения отложениями, смываемыми при циркуляции с внутренних поверхностей трубопровода и полотенцесушителей, разложение магниевого анода. Отложения накапливаются на дне и стенках бойлера, что достаточно быстро приводит к интенсивному размножению термотолерантных бактерий, и, как следствие, интенсивному запаху сероводорода,
  • если водоочистное оборудование устанавливается на трубопроводную систему, включающую бойлер ГВС, которая уже эксплуатировалась(даже короткое время) неочищенной водой.

Грязные, ржавые трубы, забитые накипью теплообменники и котлы - не только источник загрязнения воды, но и причина нарушения гидравлических и тепловых режимов, так как внутреннее обрастание труб и теплообменных поверхностей влечет уменьшение проходного сечения вплоть до его полной закупорки и прекращения подачи воды на точки водоразбора или теплоразбора. В последнем случае выход один - замена труб или теплообменников, что зачастую сопряжено с частичным разрушением и последующим восстановлением строительных конструкций и большие финансовые затраты.

Отложения в трубах и теплообменниках, возникающие из-за содержащихся в воде солей кальция и магния, железоокисные отложения, размножение бактерий - наиболее распространенная проблема, с которой приходится сталкиваться в быту и в промышленности. Накипь создает большое термическое сопротивление тепловому потоку, что ведет к снижению температуры теплоносителя и уменьшению теплопроводности системы отопления, понижению температуры ГВС. Это значит, что уменьшается теплоотдача и пропускная способность труб. Температура как в помещениях, так и в трубах горячего водоснабжения падает, а для ее увеличения приходится увеличивать затраты топлива на котельных установках, а в частных домах увеличивается расход газа на подогрев воды.

Эффективно удалить различные загрязнения внутренних поверхностей и восстановить пропускную способность трубопроводов и теплопередачу без нарушения целостности трубопроводной системы и водонагревательного оборудования позволяет метод гидрохимической промывки с помощью специальных средств.

Промывка тепло-водонагревательного оборудования и трубопроводов питьевого и хозяйственного назначения проводится только разрешенными для конкретного использования реагентами, сертифицированными СанЭпиднадзором РФ, абсолютно безопасны для целостности оборудования (прокладки, краны и т.д.), не влияют на материал трубопроводов (сталь, оцинковка, металлопласт, пластик), т.к. размывают только отложения внутри труб.

К несомненным достоинствам метода гидрохимических промывок относится быстрота, с которой получается положительный результат при минимальных неудобствах для владельцев частных домов и коттеджей, т.к. за один цикл проводится промывка контуров горячего, холодного водоснабжения и водонагревательного оборудования (бойлеров и котлов ГВС).

Работы по промывке трубопроводов и водонагревательного оборудования проводятся без слива системы (что особенно важно для отопления), и вне зависимости от времени года.

ВАЖНО ЗНАТЬ:

Отопительные системы, в которых в качестве теплоносителя залит какой-либо антифриз - при замене антифриза на воду система отопления и котел в обязательном порядке должны быть промыты с применением специальных средств.

Если не сделать качественной промывки, можно столкнуться с таким явлением, как «шум» в котле и отопительной системе- это остатки антифриза пенятся и вызывают эти явления. В некоторых случаях происходит аварийное отключение котла(как правило, в самый «неподходящий момент»).

Для снижения последствий кислородной коррозии и отложений солей жесткости на теплопередающих поверхностях в системе отопления рекомендуем использовать ингибиторы коррозии и отложений солей жесткости.

Использование в качестве теплоносителя умягченной воды не избавляет от такой проблемы, как кислородная коррозия, поэтому в таких системах отопления также в качестве профилактики коррозии необходимо добавлять ингибиторы коррозии. Количество ингибитора зависит от объема системы, но в среднем достаточно 5% на весь объем системы, один раз в год добавляется порядка 1-2% средства (это зависит от объема подпитки системы отопления в течении года).

Системы горячего
и холодного водоснабжения

Признаки загрязнения воды:

  • Неприятный запах
  • Изменение цветности
  • Накипь

  • Причины загрязнения:

  • Недостаточная или
    отсутствующая водоподготовка
  • Отложения в трубопроводах солей
    кальция, магня, железа
  • Размножение бактерий внутри трубопроводов
  • Коррозия трубопроводов

  • Система отопления

    Признаки снижения эффективности
    работы отопительной системы:

  • Уменьшение температуры отопительных приборов
  • Увеличение расходов энергоносителей

  • Причины:

  • Отложения внутри труб и теплового оборудования

  • Ингибитор коррозии марки СП-В

    Важно! Перед установкой или сразу после установки нового водоподготовительного оборудования рекомендуется промыть систему трубопроводов ГВС, ХВС и бойлер для исключения появления неприятных запахов в воде


    Для решения проблем, с которыми сталкиваются пользователи водонагревательного оборудования при его эксплуатации мы предлагаем:

    1. Анализ воды (включая экспресс-анализ на месте)
    2. Комплексное обследование систем горячего и холодного водоснабжения,
    отопления и имеющейся системы водоподготовки
    3. Подбор необходимых реагентов для промывки (в зависимости от характера отложений и материала труб)
    4. Промывка системы, с гарантией эффективного удаления отложений
    5. Разработка рекомендации по увеличению эффективности водоподготовки
    6. Абонентское обслуживание (постоянный контроль за состоянием систем
    и своевременное устранение проблем).
    7. Защита трубопроводов и водонагревательного оборудования системы питьевого водоснабжения от коррозии и накипи препаратом "Сиквест ".
    8. Защита трубопроводов и водонагревательного оборудования систем отопления, охлаждения и кондиционирования от коррозии и накипи препаратом "СПВ".
    9. Дезинфекция трубопроводов препаратом "Дезавид ".
    10. Консультации по вопросам подбора оборудования и реагентов для водоочистки.

    Химическая (гидрохимическая) очистка трубопроводов гидравлических систем различного назначения

    Основной причиной сбоев в работе гидравлических систем являются разнообразные механические примеси в масле (и других рабочих жидкостях), которые выводят из строя золотники (заклинивание или постепенное истирание рабочих поверхностей). Поэтому в процессе эксплуатации гидравлической системы чистота масла – основное условие бесперебойной работы. Хотя процесс эксплуатации гидравлической системы и предполагает ее периодические остановы и вскрытия, их количество зависит от чистоты труб на стадии ввода в эксплуатацию.

    Существующий до сего времени и довольно распространенный способ очистки внутренних поверхностей труб – так называемое «травление» труб в ванне с кислотой.

    Однако такой способ очистки труб не дает стопроцентной гарантии чистоты внутренних поверхностей после монтажа системы, т.к. в процессе монтажа происходит неизбежное загрязнение как механическими примесями, так и вторичной коррозией(особенно для черных сталей).

    Степень чистоты труб будет гораздо эффективнее, если проводить предпусковую очистку уже смонтированной системы, выделяя замкнутые контуры для создания циркуляции моющего реагента.

    Химическая (гидрохимическая) очистка гидравлических систем методом циркуляции по выделенным контурам позволяет:

    • удалить коррозионные и механические отложения;
    • обезжирить внутренние поверхности труб;
    • удалить слой ингибитора кислородной коррозии (при необходимости);
    • провести пассивирование внутренних поверхностей труб.

    Продолжительность работ по гидрохимической очистке, подбор и порядок применения реагентов, количество расходных материалов, трудоемкость зависят от степени коррозионного поражения труб, общего объема гидросистемы, количества и конфигурации циркуляционных контуров.

    Группа компаний сайт проводит гидрохимические очистки разнообразного промышленного оборудования и трубопроводов различного назначения:

    • теплоэнергетического оборудования (бойлеры накопительные, теплообменники, водогрейные котлы);
    • гидравлические системы различного назначения;
    • технологическое оборудование (контура охлаждения термопластавтоматов, выдувных машин и т.д.)

    Консультации по вопросам подбора оборудования и реагентов для водоочистки.
    Loading...Loading...