§2. Задачи на пропорциональное деление

{module Адаптивный блок Адсенс в начале статьи}

ЗАДАЧИ НА ПРОПОРЦИОНАЛЬНОЕ ДЕЛЕНИЕ

4 КЛАСС

Задачи на пропорциональное деление получили свое название по способу их решения. Чтобы дать ответ на вопрос задачи необходимо составить некоторую пропорцию и рассчитать как соотносятся между собой искомые величины.

Рассмотрим решение задачи на пропорциональное деление на примере:

Задача: Двое рабочих заработали 9000 рублей. Один работал 2 недели, а другой 8 недель. Сколько денег заработал каждый?

Решение: Исходя из условия задачи, можно найти как оплачивается одна неделя такой работы:

9000 ÷ (8 + 2) = 900 рублей за неделю.

900 · 2 = 1800 рублей - один рабочий;

900 · 8 = 7200 рублей - другой рабочий.

Ответ: 1800 и 7200.

Примеры задач на пропорциональное деление:

1) Двое рабочих получили 8000 рублей. Как они разделят свой заработок, если один работал 6 недель, а другой 4 недели?

2) 25 м проволоки весят 700 г. Взяли два мотка проволоки. В одном мотке 30 м проволоки, а в другом на 15 м больше. Сколько весит каждый моток?

3) Для приготовления торфоперегнойных горшков берут на 7 частей земли 2 части торфа. Сколько нужно взять земли на 200 кг торфа?

4) Две школы выписали на 960 рублей клубничной рассады. Одна школа взяла 3 ящика, а другая 5 ящиков. Сколько должна заплатить каждая школа за рассаду клубники?

5) Два грузовика перевезли 77 т груза, сделав одинаковое число рейсов. Сколько тонн груза перевёз каждый грузовик, если один грузовик перевозил за рейс 3 т, а другой - 4 т?

6) Двое рабочих выписали из питомника 26 яблонь. Как они должны разделить яблони, если один дал на покупку 500 рублей, а другой 800 рублей?

7) Сколько граммов резинового клея получится из 50 г каучука, если для приготовления клея берут на одну часть каучука 9 частей очищенного бензина?

8) Двое рабочих заработали 8400 рублей. Первый работал 5 недель, а второй 7 недель. Сколько денег заработал каждый рабочий?

9) Две бригады работали одинаковое время и заработали вместе 810 рублей. Как они должны разделить этот заработок, если в одной бригаде было 4 человека, а в другой 5?

10) Клуб купил одинаковое число лыж и коньков. Пара коньков стоит 6 долларов, а пара лыж 9 долларов. Сколько стоят отдельно коньки и лыжи, если за всю покупку заплатили 900 долларов?

11) Для приготовления жидкого столярного клея берут 15 частей плиточного клея и 17 частей воды. Сколько нужно взять плиточного клея для изготовления 640 г жидкого столярного клея?

12) На 118 рублей купили одинаковое число пальто для мальчиков и девочек. Сколько куплено тех и других, если каждое пальто для мальчиков стоило 31 марку, а для девочек 28 марок?

13) Колхоз привёз одинаковое количество ящиков яблок и груш. Каждый ящик груш весил 50 кг, а ящик яблок 40 кг. Все фрукты вместе весили 810 кг. Сколько килограммов тех и других фруктов отдельно привезли?

14) В двух кусках 24 м сукна. Один кусок стоит 240 долларов, а другой 480 долларов. Сколько метров сукна в каждом куске?

15) "Москвич" на 100 км пути расходует 9 л бензина, "Волга" - 13 л. Обеим машинам отпущено 66 л бензина на 300 км пути. Сколько литров бензина отпущено каждой машине?

{module Адаптивный блок Адсенс в конце статьи}

1. Чтобы разделить некоторое число пропорционально данным числам (разделить в данном отношении), надо разделить это число на сумму данных чисел и результат умножить на каждое из них.

2. Чтобы разделить число на части, обратно пропорциональные данным числам, достаточно разделить это число на части, прямо пропорциональные числам, обратным данным.

УПРАЖНЕНИЯ С РЕШЕНИЯМИ

1. Отрезок длиной 15 см разделить в отношении Решение. см.

2. Число 27 разделить обратно пропорционально числам 4 и 5.

Решение. Числа, обратные данным, относятся как Получим

ДИДАКТИЧЕСКИЙ МАТЕРИАЛ

А. 1. Отрезок длиной разделили на четыре части, пропорциональные числам 2, 3, 4 и 5. Найдите длины этих частей.

2. Стороны треугольника, периметр которого пропорциональны числам 5, 7 и 8. Найдите стороны треугольника.

3. Число 196 разделите на части, пропорциональные числам:

4. Число 434 разделите на части, обратно пропорциональные числам: а) 15 и 16; б) 2, 3 и 5.

Б. 1. Площади полей, засеянных рожью, пшеницей и ячменем, пропорциональны числам 9, 5 и 3. Сколько гектаров засеяно рожью и сколько ячменем, если известно, что пшеницей засеяно

Характерные особенности такого вида задач:

1) В начальных классах решаются задачи на пропорциональное деление только с прямо пропорциональной зависимостью величин.

2) В начальных классах задачи на пропорциональное деление решаются только способом нахождения значения постоянной величины.

Подготовка:

1) Работа над величинами.

2) Связь между величинами.

3) Наблюдение за зависимостью между величинами.

4) Хорошее овладение способами решения задач на нахождение четвёртого пропорционального.

Ознакомление: первые задачи на пропорциональное деление иллюстрируются или инсценируются. Переход к ознакомлению можно осуществлять от задач на нахождение четвёртого пропорционального.

Вид задачи На пропорциональное деление
Условие В магазин привезли 6 ящиков картофеля и 4 таких же ящика свёклы. Всего в магазин привезли 120 кг овощей. Сколько килограммов картофеля и сколько килограммов свёклы привезли в магазин?
Краткая запись условия 120 кг
Разбор задачи Ана­литический способ разбора (от вопроса к данным): 1) Что известно в задаче? 2) Что нужно узнать в задаче? 3) Можем ли мы сразу ответить, сколько килограммов картофеля привезли в магазин? (Нет.) 4) Что для этого нужно узнать? (Массу одного ящика и количества ящиков.) 5) Количество ящиков известно, а как можно найти массу одного ящика? (Общую массу разделить на общее количество ящиков.) 6) Как найдём общее количество ящиков? (К 6 прибавим 4.) 7) Узнав массу одного ящика, как найдём массу всего картофеля? (Массу одного ящика умножим на количество ящиков с картофелем.) 8) Как узнать массу всей свёклы? (Массу одного ящика умножим на количество ящиков со свёклой.) 9) Как можно другим способом узнать массу всей свёклы? (Из общей массы вычесть массу картофеля.)
Запись решения Запись решения по действиям с пояснением: 1) 6 + 4 = 10 (ящ.) – привезли всего. 2) 120: 10 = 12 (кг) – масса одного ящика. 3) 12 ∙ 6 = 72 (кг) – привезли картофеля. 4) 12 ∙ 4 = 48 (кг) – привезли свёклы. Ответ: 72 кг и 48 кг.
Закрепление:задания на составление задач данного вида с акцентированием на жизненную ситуацию. Решение задач на нахождение неизвестных по двум разностям В качестве подготовительных упражнений к ведению задач этого типа полезно предлагать задачи-вопросы и простые задачи повышенной трудности, которые помогут детям уяснить соответствие между двумя разностями, например: 1) Сестра купила 5 одинаковых тетрадей, а брат 8 таких же тетрадей. Кто из них больше уплатил денег? Почему? За сколько тетрадей брат уплатил столько же денег, сколько уплатила сестра? 2) Брат и сестра купили тетради по одинаковой цене. Брат купил на 3 тетради больше, чем сестра, и уплатил на 6 рублей больше, чем сестра. Сколько стоила 1 тетрадь? Выполняя предметную иллюстрацию, надо показать детям, что брат купил столько же тетрадей, сколько сестра, и ещё 3 тетради и уплатил денег столько же, сколько сестра, и ещё 6 рублей. Отсюда можно заключить, что 3 тетради стоят 6 рублей, значит, можно узнать, сколько стоит 1 тетрадь. Такие упражнения надо включать с различными группами пропорциональных величин. Методика работы по ознакомлению с задачами на нахождение неизвестных по двум разностям аналогична мето­дике введения задач на пропорциональное деление.
Вид задачи На нахождение неизвестных по двум разностям
Условие В магазин привезли 6 ящиков картофеля и 4 таких же ящика свёклы, причём картофеля привезли на 24 кг больше, чем свёклы. Сколько килограммов картофеля и сколько килограммов свёклы привезли в магазин?
Краткая запись условия на 24 кг больше. Из этой наглядной записи хорошо видно, что 24 кг картофеля находится в 2 ящиках.
Разбор задачи Синтетический способ разбора (от данных к вопросу): 1) Что известно в задаче? 2) Что нужно узнать в задаче? 3) Почему картофеля оказалось в магазине на 24 кг больше? (Потому, что ящиков с картофелем было больше.) 4) На сколько ящиков больше? (На 2.) 5) Какой вывод из этого можно сделать? (Что 24 кг картофеля находится в 2 ящиках.) 6) Зная это, как найти массу одного ящика с картофелем? (Нужно 24 кг разделить на 2.) 7) Как теперь найти массу картофеля и массу свёклы? (Массу одного ящика умножить на количество ящиков.)
Запись решения Запись решения с предварительной постановкой вопросов: 1) На сколько ящиков картофеля привезли больше, чем свёклы? 6 – 4 = 2 (ящ.) 2) Какова масса одного ящика с овощами? 24: 2 = 12 (кг) 3) Сколько килограммов картофеля привезли в магазин? 12 ∙ 6 = 72 (кг) 4) Сколько килограммов картофеля привезли в магазин? 12 ∙ 4 = 48 (кг) Ответ: 72 кг картофеля и 48 кг свёклы.

Проверка решения выполняется способом установления соот­ветствия между числами, полученными в ответе, и данными в условии задачи: узнаем, действительно ли картофеля привезли на 24 кг больше чем свёклы: 72 – 48 = 24; значит, можно считать, что задача решена правильно.

Для закрепления умения решать задачи предлага­ются:

Готовые задачина нахождение неизвестных по двум раз­ностям I вида с различными группами пропорциональных ве­личин и проводятся различные упражнения творческого характера;

Задачи на нахож­дение неизвестных по двум разностям II вида;

Упражнения на преобразование задач.

Задачи, связанные с движением , т. е. задачи с ве­личинами: скорость, время, расстояние, рассматриваются в 4 классе.

Подготовительная работа к решению задач, свя­занных с движением, предусматривает обобщение представлений детей о движении, знакомство с новой величиной – ско­ростью, раскрытие связей между величинами: скорость, время, расстояние.

С целью обобщения представлений детей о движении полезно провести специальную экскурсию по наблюдению за движе­нием транспорта, после чего провести наблюдение в условиях класса, где движение будут демонстрировать сами дети. На экскурсии и во время работы в классе пронаблюдать за движением одного тела и двух тел относительно друг друга. Так, одно тело (трамвай, машина, человек и т.п.) может двигаться быстрее имедленнее, может остановиться, может двигаться по прямой или кривой. Два тела могут двигаться в одном направлении, а могут двигаться в противоположных направлениях: либо приближаясь одно к другому (двигаясь навстречу одно к другому), либо удаляясь одно от другого. Наблюдая указанные ситуации в условиях класса, надо показать детям, как вы­полняются чертежи: расстояние принято обозначать отрезком; место (пункт) отправления, встречи, прибытия и т.п. обознача­ют либо точкой на отрезке и соответствующей буквой, либо чёр­точкой, либо флажком; направление движения указывают стрел­кой. Например, встречное движение двух тел изображается так:


А ├────────┼────────┤В

Здесь отрезок обозначает расстояние, которое должны прой­ти тела до встречи, флажок – место встречи, точки А и В – пункты выхода тел, стрелки – направление движения. Полезно выполнять и обратные упражнения: по данному чертежу выпол­нять соответствующее движение.

При ознакомлении со скоростью целесообразно так органи­зовать работу, чтобы учащиеся нашли скорость своего движе­ния пешком. Для этого можно начертить во дворе, в спортзале или коридоре «замкнутую дорожку». На дорожке надо отметить расстояния по 10 м, чтобы удобнее было нахо­дить, какой путь прошёл каждый ученик. Учитель предлагает детям идти по дорожке, например, в течение 4 мин. Учащиеся сами легко найдут по десятиметровым отметкам пройденное расстояние. На уроке каждый из детей может вычислить, какое расстояние он проходит за 1 мин. Учитель сообщает, что рас­стояние, которое прошёл ученик за минуту, называют его ско­ростью. Ученики называют свои скорости. Затем учитель назы­вает скорости некоторых видов транспорта. Эти данные уча­щиеся могут записать в своих справочниках и использовать в дальнейшем при составлении задач.

Раскрытие связей между величинами : скорость – время – расстояние ведётся по такой же методике, как и раскрытие связей между другими пропорциональными величинами. В результате решения соответствующих простых задач ученики долж­ны усвоить такие связи: если известны расстояние и время дви­жения, то можно найти скорость действием деления; если из­вестны скорость и время движения, то можно найти расстояние действием умножения; если известны расстояние и скорость, то можно найти время движения действием деления.

Далее, опираясь на эти знания, дети будут решать состав­ные задачи, в том числе задачи на нахождение четвёртого про­порционального, на пропорциональное деление, на нахождение неизвестных по двум разностям с величинами: скорость, время, расстояние. При работе над этими задачами надо чаще исполь­зовать иллюстрации в виде чертежа, так как чертёж помогает правильно представить жизненную ситуацию, отражённую в задаче.

Так же как и при решении задач других видов, следует включать упражнения творческого характера на преобразова­ние и составление задач.

Одновременно с решением задач названных видов в 4 клас­се вводятся задачи на встречное движение и движение в про­тивоположных направлениях. Каждая из этих задач имеет три вида в зависимости от данных и искомого:

I вид – даны скорость каждого из тел и время движения, искомое – расстояние;

II вид – даны скорость каждого из тел и расстояние, ис­комое – время движения;

III вид – даны расстояние, время движения и скорость одного из тел, искомое – скорость другого тела.

В целях подготовки к введению задач на встречное дви­жение очень важно сформировать правильные представления об одновременном движении двух тел: дети должны хорошо уяснить, что если два тела вышли одновременно навстречу друг другу, то до встречи они будут находиться в пути одинаковое время и при этом оба пройдут всё расстояние между пунктами, из которых они вышли. Чтобы дети осознали это, следует вклю­чать задачи-вопросы, аналогичные следующим:

1) Из двух городов одновременно отплыли навстречу друг другу два теплохода и встретились через 3 ч. Сколько времени был в пути до встречи каждый теплоход?

2) Из посёлка в город вышел пешеход и в это время из го­рода навстречу ему выехал велосипедист, который встретил пешехода через 40 мин. Сколько времени был в пути до встречи пешеход?

Теперь можно ознакомить детей с решением задач на встречное движение, причём целесообразно на одном уроке ввести все три вида, получая новые задачи путём преобразова­ния данной в обратные. Такой приём позволяет детям само­стоятельно найти решение, поскольку задача нового вида будет получена из задачи, уже решённой детьми. Раскроем это на конкретном примере.

Учитель читает задачу: «Из двух поселков выехали одновременно навстречу друг другу два велосипедиста и встрети­лись через 2 ч. Один ехал со скоростью 15 км в час, а второй со скоростью 18 км в час. Найти расстояние между поселками».

Что известно о движении велосипедистов? Что надо узнать? Пусть это будет посёлок, из которого выехал первый велосипе­дист. (Учитель вставляет в наборное полотно карточку с рим­ской цифрой «I»). А это посёлок, из которого выехал второй велосипедист. (Вставляет карточку.) Двое из вас будут вело­сипедистами. (Выходят два ученика.) С какой скоростью ехал первый? (15 км в час.) Это твоя скорость. (Даёт карточку, на которой написано число 15.) Это твоя скорость. (Даёт второму ученику карточку.) Сколько времени они будут двигаться до встречи? (2 ч.) Начинайте двигаться. Прошел час. (Дети встав­ляют одновременно свои карточки в наборное полотно.) Про­шёл второй час. (Дети вставляют карточки.) Встретились ли велосипедисты? (Да.) Почему? (Шли до встречи по 2 ч.) Обо­значу место встречи флажком. (Вставляет флажок.) Что надо узнать? (Всё расстояние.) Обозначу вопросительным знаком. Получается иллюстрация:

I
?
II

После такого разбора учащиеся сами находят два способа решения. Решения надо записать с пояснениями сначала от­дельными действиями, а позднее можно записать выражение или уравнение.

Первый способ:

1) 35 ∙ 2 = 30 (км) – проехал первый велосипедист;

2) 18 ∙ 2 = 36 (км) – проехал второй велосипедист;

3) 30 + 36 = 66 (км) – расстояние между поселками.

Второй способ:

1) 15 + 18 = 33 (км) – сближались велосипедисты в час;

2) 33 ∙ 2 = 66 (км) – расстояние между поселками.

Если дети затруднятся в решении вторым способом, надо вновь проиллюстрировать движение: прошел час – сблизились на 33км, ещё час – ещё сблизились на 33 км, т.е. велосипе­дисты проехали 2раза по 33 км.

Учитель на доске, а дети в тетрадях выполняют чертёж к решённой задаче:

15км/ч 2 ч 18 км/ч

I ├────────┼────────┤II


Выясняется, который из велосипедистов прошёл до встречи большее расстояние и почему.

Учитель изменяет условие задачи, используя тот же чертёж:

15км/ч? ч 18 км/ч

I ├────────┼────────┤II


Дети составляют задачу по этому чертежу, затем задача коллективно разбирается, после чего записывается решение с пояснениями:

1) 15+18=33 (км) – сближались велосипедисты в час;

2) 66:33=2 (ч) – время движения до встречи.

Условие задачи ещё раз изменяется:

Км/ч 2 ч 18 км/ч

I ├────────┼────────┤II


Ученики составляют задачу, после чего коллективно разби­раются два способа решения:

Первый способ:

1) 18 ∙ 2 = 36 (км) – проехал до встречи второй велосипедист;

2) 66 – 36 = 30 (км) – проехал до встречи первый велосипедист;

3) 30: 2 = 15 (км/ч) – скорость первого велосипедиста.

Ответ: 15 км в час.

Второй способ:

1) 66: 2 = 33 (км) – сближались велосипедисты в час;

2) 33 – 18 = 15 (км/ч) – скорость первого велосипедиста.

Ответ: 15 км в час.

На последующих уроках проводится работа по закрепле­нию умения решать задачи рассмотренных видов. С этой целью включаются готовые задачи на встречное движение, при этом учащиеся сами выполняют чертёж, выясняя предварительно, ближе к какому пункту произойдёт встреча. Как и при работе над другими задачами, следует выполнять различные упраж­нения творческого характера.

Аналогичным образом ведётся работа над задачами на дви­жение в противоположных направлениях.

Тема урока : Пропорциональное деление

В школьном курсе математики предлагается очень мало задач на «пропорциональное деление». Однако их можно встретить в экзаменационных сборниках для 9 класса авт. Л.И.Звавич и др. Эти задачи предлагаются на вступительных экзаменах в ВУЗы на специальности, связанные с экономикой, химией, связанных с легкой промышленностью и народного хозяйства.
Предлагаемые задачи можно использовать на факультативах в общеобразовательных школах, включить их в программу гимназий и лицеев, связанных с углубленным изучением математики, начиная с 6 класса, для индивидуальной работы с сильными учениками.

Эти задачи может решить шестиклассник.

Необходимость разделить заданную величину или число в данном отношении часто возникает в практической жизни человека – при приготовлении различных смесей, растворов, блюд по кулинарным рецептам, при распределении прибыли или мест в парламенте и так далее.

Например, если два предпринимателя вложили в проект соответственно 3 млн. рублей и 4 млн.рублей и получили 14 млн. рублей прибыли, то справедливость требует, чтобы полученная прибыль делилась пропорционально числам 3 и 4. Само слово «пропорционально» происходит от латинского «гармонично», «соразмерно».
Как же узнать, сколько денег должен получить каждый предприниматель? Обозначим части, которые они должны получить, соответственно a и b. Тогда a: b = 3: 4.
Поменяем в пропорции местами средние члены и обозначим коэффициент пропорциональности k. Получим равенство:

Из которого следует, что а = 3k, b = 4k. Так как сумма двух частей составляет 14 млн. рублей, то значение k должно удовлетворять равенству
3k + 4k =14 <=> 7k = 14 <=> k = 2.
Значит, при справедливом делении первый предприниматель должен получить 2 3 = 6 млн.рублей, а второй - 2 4 = 8 млн.рублей.

Рассмотрим еще одну задачу.

Для приготовления строительного раствора на 2 части цемента берут 2 части песка и 0,8 частей воды. Сколько цемента, песка и воды потребуется для приготовления 180 кг раствора?

Решение:

1) Пусть для приготовления строительного раствора требуется а кг цемента, b кг песка и с кг воды. Обозначим коэффициент пропорциональности k , тогда

Следовательно, а = 2 k , b = 2 k , c = 0,8 k .
По условию задачи, сумма всех частей равна 180 кг, значит:
2 k + 2 k + 0,8 k = 180 <=>4,8 k = 180 <=> k = 37,5.
2) 37,5 2 = 75 (кг) – потребуется песка и цемента.
3) 37,5 0,8 = 30 (кг) – потребуется воды.
Ответ: потребуется 75 кг цемента, 75 кг песка и 30 кг воды.

Для краткого обозначения условия задач о прямо пропорциональном делении в математическом языке используют иногда «длинные отношения». Например, a: b: c = 2: 2: 0,8. При этом говорят: «Числа a, b и с относятся как 2 к 3 к 0,8».
Длинные отношения – это условные записи, которые показывают, сколько равных долей величины приходится на каждую часть. Их нельзя понимать как запись деления нескольких чисел. Действительно, подставив в последнее равенство вместо букв соответствующие им числа, получим верное высказывание 75: 75: 30 = 2: 2: 0,8;
Тогда как при непосредственном подсчете левой и правой части получаются разные числа: в левой части , а в правой части – 1,25.
Зато длинные отношения можно преобразовывать, как обычные дроби: умножать все его члены на одно и то же число, сокращать. Эти преобразования позволяют упрощать запись, а значит, и решение задач. Так, если бы в нашей задаче мы сначала умножили все члены отношения на 10, а затем разделили их на 4, то избавились бы от дробей: 2: 2: 0,8 = 20: 20: 8 = 5: 5: 2 и получили более простое уравнение.
Решая задачи на пропорциональное деление, мы вновь наблюдаем, как абстрактные математические понятия – в данном случае прямая и обратная пропорциональность – помогают отвечать на серьезные практические вопросы.

Предлагаю еще несколько задач по этой теме.

Задача 1.

Трое рабочих получили 4080 рублей. Суммы, полученные первым и вторым рабочими, относятся, как . Сумма, полученная третьим рабочим составляет того. Что получил первый рабочий. Сколько денег получил каждый рабочий?

Решение:

Ответ: 2448 рублей получил первый рабочий; 571,2 рубля получил второй рабочий и 1060,8 рубля получил третий рабочий.

Задача 2.

Три цеха сшили 16800 пар обуви. Количество пар обуви сшитой первым и вторым цехами относятся как а третий цех сшил 75% того, что сшил первый цех. На сколько процентов выполнил план первый цех, если план каждого цеха был 4000 пар обуви?

Решение:

Ответ: на 180% выполнил план первый цех.

Задача 3.

В палатку привезли свеклу, морковь, капусту. Количество свеклы и моркови равно отношению , а вес капусты составляет 250% от веса моркови. Капусты было на 80 кг больше, чем свеклы. Сколько килограммов каждого овоща привезли в палатку?

Решение:

Ответ: в палатку привезли 120 кг свеклы; 80 кг моркови и 200 кг капусты.

Задача 4.

Магазин продал за 4 дня некоторое количество ткани. Количество ткани, проданной за первые три дня относились, как 0,9: 1,4: 1,3. В четвертый день продали 420 м ткани, что составило 28% всей ткани, проданной магазином за четыре дня. Сколько ткани продали за каждый день?

Решение:

  1. n1 : n2 : n3 = 0,9: 1,4: 1,3 = 9: 14: 13
  2. 28% составляет 420 м: 420: 0,28 = 1500 (м) – ткани продали за четыре дня.
  3. 1500 – 420 = 1080 (м) – ткани продали за первые три дня.
  4. 9 + 14 + 13 = 36 (ч.) – приходится на 1080 м ткани.
  5. 1080: 36 = 30 (м) – ткани приходится на 1 часть.
  6. 30 9 = 270 (м) – ткани продали за первый день.
  7. 30 14 = 520 (м) – ткани продали за второй день.
  8. 30 13 = 390 (м) – ткани продали за третий день.

Ответ: магазин продал 270 м ткани за первый день; 520 м ткани за второй день; 390 м ткани за третий день и 420 м за четвертый день.

Задача 5.

Три класса собирали металлолом. Количество металлолома, собранного первым и вторым классами относится, как 4,5: 3. Количество металлолома, собранного третьим классом составляет 40% того, что собрал первый класс. Сколько металлолома собрал каждый класс, если второй класс собрал на 0,8 тонны металлолома больше, чем третий класс?

Решение:

  1. n1 : n2 = 4,5: 3 = 45: 30 = 3: 2.
  2. 40% от 3: 3 0,4 = 1,2(ч.) – приходится на третий класс
  3. n1 : n2 : n3 = 3: 2: 1,2 = 30: 20: 12 =15: 10: 6.
  4. 10 – 6 = 4 (ч.) – приходится на 0,8 т металлолома.
  5. 0,8: 4 15 = 3 (т) – собрал первый класс.
  6. 0,8: 4 10 = 2 (т) – собрал второй класс.
  7. 0,8: 4 6 = 1,2 (т) – собрал третий класс.

Ответ: первый класс собрал 3 т металлолома, второй класс собрал
2 т металлолома, третий класс собрал 1,2 т металлолома.

Задача 6.

Три бригады начали одновременно пахоту земли. Норма вспашки первой бригады ко второй относится как 0,5 к 0,4, а норма вспашки второй бригады к третьей относится как 2 к 1,8; но первая и третья бригады увеличили нормы вспашки на 10%, а вторая бригада – на 20%. Таким образом, к одному и тому же сроку,первая бригада вспахала на 15,4 га больше, чем третья бригада. Сколько га земли вспахала к этому времени каждая бригада?

Решение:

  1. n1 : n2 = 0,5: 0,4 = 5: 4.
  2. n2 : n3 = 2: 1,8 = 20 = 18 = 10: 9
  3. выразим n 1 : n 2 : n 3 в одинаковых долях n 1 : n 2 : n 3 =25: 20: 18
  4. 10% от 25: 25 0,1 = 2,5; 25 + 2,5 = 27,5 (ч) составляет норма первой бригады после увеличения.
  5. 20% от 20: 20 0,2 = 4 ; 20 + 4 = 24 (ч) –составляет норма второй бригады после увеличения.
  6. 10% от 18: 18 0,1 = 1,8; 18 + 1,8 = 19,8 (ч) составляет норма третьей бригады после увеличения.
  7. n 1 : n 2 : n 3 =27,5: 24: 19,8 = 275: 240: 198
  8. 275 – 198 – 77(ч) – приходится на 14, 4 га земли
  9. 15,4: 77 = 0,2 (га) – приходится на одну часть.
  10. 0,2 275 = 55 (га) – вспахала первая бригада.
  11. 0,2 240 = 48(га) – вспахала вторая бригада.
  12. 0,2 198 = 39,6 (га) – вспахала третья бригада.

Ответ: 55 га земли вспахала первая бригада, 48 га земли спахала вторая бригада, 39,6 га земли вспахала третья бригада.

Предлагаю несколько задач для самостоятельного решения.

Задача 1.

Колхоз засыпал в три склада картофель в отношении 1,3 к 2,5 к 1,2, причем во второй склад засыпали на 43,2 тонны картофеля больше, чем в первый склад. В течение месяца с первого склада вывезли 40% имевшегося там картофеля, со второго - 30%, а с третьего – 25% имевшегося там картофеля. Сколько картофеля вывезли с трех складов?
Ответ: вывезли всего 56,62 т картофеля.

Задача 2.

Магазин продавал муку в течение четырех дней. Количество муки, проданной за первые три дня, относится, как 1,8 к 2,8 к 2,6. В четвертый день продали 840 килограммов муки, что составляет 56% всей муки, проданной за четыре дня. Сколько муки продавали каждый день?

Задача 3.

Колхоз засыпал зерно в три склада. На первом складе было 40% всего зерна, засыпанного в три склада. Количество зерна, засыпанного во второй и третий склады, относится, как 16 к 21. Сколько зерна было на первом складе, если на третьем складе было на 450 ц больше, чем на втором.
Ответ: 2220 ц зерна было засыпано в первый склад.

Задача 4.

Три цеха изготовили 6500 деталей. Количество деталей, изготовленных первым и вторым цехами, относится, как 0,1875 к 0,25., количество деталей, изготовленных третьим цехом на 50% больше, чем количество деталей, изготовленных вторым цехом.. Сколько деталей изготовил каждый цех.

Задача 5.

Отряд отправился в поход из пункта А в пункт В. Первую часть пути школьники проехали на велосипедах, вторую часть пути прошли пешком, а оставшиеся 30 километров проплыли на лодке. Зная, что длины этих частей пути относятся, как 1,625 к 1,3 к 3, 25, определите длину всего маршрута.
Ответ: длина всего маршрута 57 километров.

Задача 6.

Из четырех чисел первые три относятся между собой, как , а четвертое составляет 40% от первого числа. Найти сумму всех четырех чисел, если первое больше суммы остальных на 40.

Продолжим решение задач.

Задача 7.

Найти сумму трех чисел, зная, что первое число равно 100, а первое число относится ко второму, как ; а второе к третьему, как 12 к 7.

Решение:

Ответ: сумма трех чисел равна 385.

Задача 8.
Найти сумму трех чисел, зная, что первое число относится к третьему, как ; второе число относится к третьему как 5 к 2, а сумма первых двух чисел равна 500.

Решение:

Ответ: сумма трех чисел равна 650.

Задача 9.

Найти каждое из трех чисел, если первое число относится ко второму как 0,6: 0,75, а второе к третьему, как 1: 0,9. Сумма первого и третьего чисел на 105 больше второго числа.

Решение:

  1. n 1 : n 3 = 0,6: 0,75 = 60: 75 = 4: 5
  2. n 2 : n 3 = 1: 0,9 = 10: 9.
  3. выразим n 1 : n 2 : n 3 в одинаковых долях n 1 : n 2 : n 3 = 8: 10: 9.
  4. (8 + 9) – 10 = 7 (ч.) – приходится на 105.
  5. 105: 7 8 = 120 – первое число.
  6. 105: 7 10 – 150 – второе число.
  7. 105: 7 9 = 135 – третье число.

Ответ: 120; 150; 135.

Задача 10.

Из данных четырех чисел первые три относятся, как , а четвертое составляет 15% второго числа. Найти эти числа, если известно, что второе число больше суммы остальных на 8.

Решение:

Ответ: 48; 80; 12; 12.

Задача 11.

Задача 12.

Три колхоза построили хлебозавод. Суммы, внесенные колхозами в строительство, относятся, как . Сколько денег внес каждый колхоз, если стройматериалы стоят 1620 миллионов рублей, расход на рабочую силу составляет от стоимости материала, на оборудование израсходовали стоимости материала и рабочей силы вместе?

Решение:

Ответ: на материалы – 2700 млн.рублей; на рабочую силу – 3600 млн.рублей; на оборудование – 4500 млн. рублей.

Loading...Loading...