Расходомер, баланс потоков при установке расходомеров для учета теплопотребления и горячей воды. Коптев В.С. «О погрешности измерения расхода теплосчетчика

Недавно на форуме НПО «Тепловизор» был задан вопрос: «Теплосчетчик, как известно, имеет погрешность в измерениях расхода, температуры... Вопрос в вот в чем: скажем, за сутки через расходомер пришло 100 кубов теплоносителя, ушло 99 (по показаниям счетчика), погрешность измерения 1% (в пределах погрешности измерния 2%). В энергоснабжающей организации спрашивают, куда делся 1 куб, и как они будут считать расходы воды. Как с ними спорить, что это в пределах погрешности прибора, на что апеллировать? На какой нормативный документ сослаться?». Поскольку эта тема актуальна для многих потребителей, мы решили выложить небольшую статью.

Отвечая на Ваш вопрос, заранее вынуждены извиниться за дидактический характер ответа. Подобные вопросы находят ответ в основах теории измерений, являющейся таким же элементом технической культуры, да и культуры вообще, как например, основы философии, математики и физики.

Все измерительные процессы и средства не идеальны, т.е. при измерении с помощью них возникают ошибки – отклонения от истинного значения измеряемой величины – длины, объема, массы и пр. Более того, каждое измерение даже на одном и том же измерительном средстве зачастую дает разные результаты. Максимальная относительная величина возможных односторонних отклонений от истинного значения измеряемой величины является неотъемлемой и важнейшей характеристикой конкретного измерительного средства будь это линейка, весы, счетчик-расходомер и т.п. Эта характеристика называется погрешностью измерительного средства и выражается в процентах, или долях процента. Таким образом зона отклонений показаний измерительного средства от истинного значения, в силу симметрии этих отклонений, равна удвоенной погрешности средства измерения. Эта зона является зоной неопределенности значения измеряемой величины. То есть истинное значение измеряемой величины может быть любым находящимся в пределах этой зоны.

Измерения утечек или подмесов теплоносителя с помощью счетчиков-расходомеров, установленных на подающем и обратном трубопроводах, являются разностными или непрямыми измерениями, т.е. такими, где значение измеряемой величины определяется в процессе математической обработки результатов двух и более измерений.

Для разностных измерений, если не предусмотрены специальные мероприятия по взаимопривязке измерительных средств, среднестатистически зона неопределенности увеличивается в корень из двух раз. Относительная погрешность таких измерений гиперболически нарастает с уменьшением измеряемой разности. Так для приведенного Вами случая относительная погрешность измерения величины предполагаемой утечки в одну тонну (при вычислении объема следует иметь в виду, что вода в системе отопления при охлаждении ее с 90° С до 60° С уменьшает удельный объем на 1,9%) на уровне прошедших 100 тонн для счетчиков–расходомеров класса 1,0 превышает 100%, что противоречит требованиям пункта 5.2.4. «Правил учета тепловой энергии и теплоносителя», согласно которому «Водосчетчики должны обеспечивать измерение массы (объема) теплоносителя с относительной погрешностью не более 2%...». Следует отметить, что в приведенном Вами примере относительная погрешность измерения утечки в разностной схеме будет тогда удовлетворять требованиям «Правил учета…», когда уровень утечки будет превышать 71 тонну, поэтому «Правила учета…» предусматривают определение массы (объема) теплоносителя, израсходованного на подпитку и водоразбор, прямым измерением с помощью отдельно установленных водосчетчиков на трубопроводах подпитки и водоразбора ГВС. Таким образом, вопрос-гипотеза инспектора теплоснабжающей организации о суточной утечке в теплосистеме потребителя 1 тонны метрологически и юридически не обоснован.

Если величина расхождения показаний измерительных средств используемых в разностных измерениях меньше зоны неопределенности (Ваш пример), то отсутствует взаимооднозначное соответствие между измеряемой величиной и результом измерения, и возможен только вероятностно-логический анализ. То есть необходимы дополнительные эксперименты – измерения, позволяющие подтвердить или опровергнуть гипотезу о наличии утечек или подмесов. На практике, если нет возможности непосредственным осмотром системы теплоснабжения подтвердить отсутствие утечек, закрывают задвижку на прямом трубопроводе, фиксируя показания расходомеров и манометров на обоих трубопроводах. Далее закрывают задвижку на обратном трубопроводе, также фиксируя показания тех же приборов. На третьем этапе открывают задвижку на прямом трубопроводе, также фиксируя показания тех же приборов. После чего все задвижки возвращаются в исходное состояние (как до начала работ). Современные теплосчетчики и счетчики-расходомеры, устанавливаемые на узлах учета, если верить заявляемым на них характеристикам, имеют широкий диапазон измеряемых расходов, что и позволяет фиксировать расходы с относительной погрешностью не хуже 2% на уровне 1% от номинального. Учитывая, что задвижки зачастую полностью не перекрывают расход, в итоге мы будем иметь таблицу значений расходов и давлений по прямому и обратному трубопроводам для всех состояний задвижек.

№ п/п

Состояние задвижек

Показания

Расходомеров, т

Манометров, МПа

на трубопроводах

обратном

обратном

обратном

G 2 прямой

G 2 обратный

G 3 прямой

G 3 обратный

G 4 прямой

G 4 обратный

*Расходы определены из примера 100 тонн за 24 часа.

И положительное значение расхода связанного с утечкой определим из:

G 1 ут = G 4 прямой - G 2 прямой;

G 2 ут = G 4 обратный - G 2 обратный;

При этом рабочее значение утечки, в силу ее гидравлической близости либо к прямому, либо к обратному трубопроводу, будет находиться между значениями G 1 ут < G рабочее ут < G 2 ут.

1. В целях экономии подключение комплекта термопреобразователей с трех или четырех проводной схемой подключения выполняется по двухпроводной схеме. Были случаи, когда такой монтаж выполнялся телефонным проводом, или проводом с сечением 0,22 мм 2 (рекомендовано не менее 0,35 мм 2) что приводило к ошибке при измерении температуры более 10 градусов, при этом погрешность измерений счетчика тепла возрастает до 50%.

Теплосчетчики с различными дефектами вызванными неверной установкой и эксплуатацией

2. Достаточно часто встречаются коммерческие узлы учета тепла с гильзами для термопреобразователей, в которых (в одной или в обеих) отсутствует масло, что приводит к ошибке при измерении температуры до 4 градусов. При расходе в 8т/час, а это расход теплоносителя характерный для четырех подъездной пятиэтажки, погрешность измерений тепловой энергии составляет 0,032 Гкал в час или 0,768 в сутки. В денежном выражении – приблизительно 30 т. руб. в месяц.

Наиболее часто встречающиеся нарушения, вносящие значительную погрешность измерений счетчика тепла.

на фото отчетливо видно что прокладка была квадратная и расходомер установлен с перекосом

3. Часто в трубопроводе системы отопления с диаметром 32 или 40 мм установлены термопреобразователи — преобразователи температуры, длина которых значительно превышает диаметры трубопроводов. Если на трубопроводах малого диаметра термопреобразователи — преобразователи температуры устанавливаются без применения расширителей трубопровода, рабочая часть термопреобразователя — преобразователя температуры значительно выступает за пределы трубопровода и не может достоверно измерять температуру теплоносителя. Следовательно, точность и погрешность измерений счетчика, не соответствует заявленной производителем, и такой счетчик не может считаться коммерческим.

4. Очень часто для уменьшения объемов работ при монтаже счетчика тепла термопреобразователи — преобразователи температуры устанавливаются в грязевики. Рабочая поверхность термопреобразователя в этом случая находиться вне зоны движения потока воды + отсутствие изоляции на грязевике способствует искажению показаний в измерении температуры на 5-7 градусов. В денежном отношении, опять же для четырех подъездной пятиэтажки, это уже порядка 60 т. рублей в месяц.

5. Установка вместо комплекта термопреобразователей температуры марки КТПТР (КТСПН) предусмотренных проектом одиночных преобразователей температуры – например ТСП100. Постоянная дополнительная погрешность измерения тепла счетчиком при этом может достигать 3%.

здесь скорее всего были применены не родные прокладки, и отсутствовал магнитно-сетчатый фильтр

6. Отсутствие повсеместно теплоизоляции верхней части преобразователей сопротивлений, особенно если эти участки расположены на улице. Понятно, что в данном случае будет присутствовать дополнительная погрешность измерения температуры, и как следствие точность +и погрешность измерения тепла .

7. Преобразователи расхода должны быть установлены в трубопроводе через паронитовые прокладки. Очень часто при демонтаже преобразователя расхода для госповерки мы извлекаем паронитовые прокладки с внутренним прорубленным зубилом треугольным или прямоугольным отверстием в виде треугольника или прямоугольника. Как в данном случае можно говорить о погрешности измерения расхода?

8. Электромагнитные преобразователи расхода ЭРСВ теплосчетчиков производства предприятия «Взлет» должны монтироваться в систему с применением динамометрического ключа, с обязательной установкой дополнительных демпфирующих прокладок. Повсеместно на объектах наблюдаются нарушения этих рекомендаций, что приводит к изменению внутреннего диаметра фторопластовой футеровки расходомерного устройства, нарушению зазоров между футеровкой и электродами съема информации о скорости потока теплоносителя и значительной погрешности измерения расхода теплоносителя .

9. В целях экономии, при монтаже расходомерных устройств, вместо рекомендованных заводами-изготовителями фланцев с центрирующими углублениями, применяются стандартные фланцы. При этом первичные преобразователи расхода могут устанавливаться со смещением до 10 мм от оси трубопровода. Трудно установить при этом погрешность измерения расхода счетчиком тепла по данному трубопроводу.

здесь был неверно заведен и не загерметизирован кабель питания

10. Применение повсеместно вместо паронитовых прокладок резиновых толщиной 3-4 мм. Неравномерное сжатие резины приводит к несоосности (перекосу) расходомеров и повышению погрешности измерений счетчика тепла. Внутренний диаметр здесь также из-за сжатия резины выдержать невозможно. Это кстати одно из основных причин, почему приборы на стенде идут с нулевой погрешностью, а по месту погрешность измерений превышает установленную для теплосчетчика. Если погрешность измерению показывает утечку, Вы соответственно за нее переплачиваете. Если наоборот, вроде бы как Вы подпитываете тепловую сеть показания не принимают к учету , теплосчетчик попросту бракуют.

11. При монтаже расходомеров наблюдаются случаи когда, кабели соединяются с ними таким образом, что водяной конденсат по кабелю затекает внутрь преобразователя расхода счетчика тепла, искажая сначала результат измерений, а затем приводя к выходу из строя первичного преобразователя расхода.

12. Имеются объекты, когда для измерения расхода теплоносителя и особенно горячей воды в системах с переменным расходом (различные регуляторы поддержания температуры в системе отопления или горячего водоснабжения ) устанавливаются счетчики, не соответствующие реальным нагрузкам. При низком расходе погрешность приборов расхода не позволяет применять его для целей коммерческого учета тепла.

Одни и теже приборы смонтированные и обслуживаемые разными организациями

13. Тоже относится к системам с повышенным расходом, без ограничивающих устройств. Когда разность между подающим и обратным трубопроводом менее 3 градусов . В этом случае погрешность измерения в определенных условиях может составлять до 50% по каналу измерения температуры, а ниже 2х процентов многие теплосчетчики – счетчики тепла вообще останавливают счет.

14. При проведении проверки узлов учета тепла выявляются узлы, данные об энергопотреблении с которых передаются поставщикам тепла. При детальном рассмотрении выясняется, что часть приборов имеет просроченные сроки поверки , к тому же узлы учета не исправны. О какой погрешности измерений можно говорить в данном случае.

Подводя итог, можно сказать, что учет тепла и теплоносителя только тогда достоверен и имеет точность и погрешность измерений , определенную паспортом узла, когда узел учета тепла и тепловой энергии спроектирован, смонтирован и обслуживается квалифицированным (обученным и аттестованным) персоналом в соответствии с правилами учета тепловой энергии и теплоносителя.

2015-16г. Парамонов Ю.О. ООО «Энергостром»

На сегодняшний день, основным документом, определяющим требования к учету тепловой энергии, являются "Правила учета тепловой энергии и теплоносителя ".

В Правилах приведены подробные формулы. Здесь я немного упрощу для лучшего понимания.

Я опишу только водяные системы, так как их большинство, и не буду рассматривать паровые системы. Если поймете суть на примере водяных систем, пар посчитаете сами без проблем.

Для расчета тепловой энергии нужно определиться с целями. Будем считать калории в теплоносителе для целей отопления или для целей горячего водоснабжения.

Расчет Гкал в системе ГВС

Если у вас стоит механический счетчик горячей воды (вертушка) или вы собираетесь его установить, то здесь все просто. Сколько накрутил, столько и придется заплатить, по утвержденному тарифу за горячую воду. Тариф, в данном случае, уже будет учитывать количество Гкал в ней.

Если у вас смонтирован узел учета тепловой энергии в горячей воде, или вы только собираетесь его установить, то платить придется отдельно за тепловую энергию (Гкал) и отдельно за сетевую воду. Также по утвержденным тарифам (руб./Гкал + руб./тонну)

Для вычисления количества калорий, получаемых с горячей водой (а также паром или конденсатом), минимум, что нам нужно знать это расход горячей воды (пара, конденсата) и ее температуру.

Расход измеряется расходомерами, температура - термопарами, термодатчиками, а Гкал вычисляет теплосчетчик (или теплорегистратор).

Qгв= Gгв *(tгв - tхв)/1000 = ... Гкал

Qгв - количество тепловой энергии, в этой формуле в Гкал.*

Gгв - расход горячей воды (или пара, или конденсата) в м. куб. или в тоннах

tгв - температура (энтальпия) горячей воды в °С **

tхв - температура (энтальпия) холодной воды в °С ***

* делим на 1000 для того, чтобы получить не калории, а гигакалории

** правильнее умножать надо не на разность температур (t гв-t хв), а на разностьэнтальпий (h гв-h хв). Величины hгв, hхв определяются по соответствующим измеренным на узле учета средним за рассматриваемый период значениям температур и давлений. Значения энтальпий близко к значениям температур. На узле учета тепловой энергии тепловычислитель сам рассчитывает и энтальпию, и Гкал.

*** температура холодной воды, она же температура подпитки, измеряется на трубопроводе холодной воды на источнике теплоты. У потребителя, как правило, нет возможности использовать этот параметр. Поэтому берется постоянная расчетная утвержденная величина: в отопительный период tхв=+5 °С (или +8 °С), в неотопительный tхв=+15 °С

Если у Вас стоит вертушка и нет возможности измерить температуру горячей воды, то для выделения Гкал, как правило, теплоснабжающая организация устанавливает постоянную расчетную величину в соответствии с нормативными документами и технической возможностью источника теплоты (котельной, или теплового пункта, например). В каждой организации своя, у нас 64,1°С.

Тогда расчет будет следующий:

Qгв = Gгв * 64,1 / 1000 = ... Гкал

Помните, что заплатить нужно будет не только за Гкал, но и за сетевую воду. По формуле и мы считаем только Гкал.

Расчет Гкал в системах водяного отопления.

Рассмотрим отличия расчета количества теплоты при открытой и при закрытой системе отопления.

Закрытая система отопления - это когда запрещено брать теплоноситель из системы, ни для целей горячего водоснабжения ни для мытья личного авто. На практике сами знаете как. Горячая вода для целей ГВС в этом случае заходит по отдельной третьей трубе или ее вообще нет, если ГВС не предусмотрено.

Открытая система отопления - это когда разрешено брать теплоноситель из системы для целей горячего водоснабжения.

При открытой системе теплоноситель можно брать из системы только в пределах договорных отношений!

Если при горячем водоснабжении мы забираем весь теплоноситель, т.е. всю сетевую воду и все Гкал в ней, то при отоплении мы возвращаем какую-то часть теплоносителя и, соответственно, какую-то часть Гкал обратно в систему. Соответственно, нужно посчитать сколько пришло Гкал и сколько ушло.

Следующая формула подходт как для открытой системы теплоснабжения, так и для закрытой.

Q = [ (G1 * (t1 - tхв)) - (G2 * (t2 - tхв)) ] / 1000 = ... Гкал

Есть еще пара формул, которые используются в учете тепловой энергии, но я беру вышестоящую, т.к. думаю, что на ней проще понять, как работают теплосчетчики, и которые дают такой же результат при расчетах, что и формула .

Q = [ (G1 * (t1 - t2)) + (G1 - G2) * (t2-tхв) ] / 1000 = ... Гкал

Q = [ (G2 * (t1 - t2)) + (G1 - G2) * (t1-tхв) ] / 1000 = ... Гкал

Q - количество потребленной тепловой энергии, Гкал.

t1 - температура (энтальпия) теплоносителя в подающем трубопроводе, °С

tхв - температура (энтальпия) холодной воды, °С

G2 - расход теплоносителя в обратном трубопроводе, т (м.куб.)

t2 - температура (энтальпия) теплоносителя в обратном трубопроводе, °С

Первая часть формулы (G1 * (t1 - tхв)) считает сколько пришло Гкал, вторая часть формулы (G2 * (t2 - tхв)) считает сколько вышло Гкал.

По формуле [ 3] теплосчетчик посчитает все Гкал одной цифрой: на отопление, на водоразбор горячей воды при открытой системе, погрешность приборов, аварийные утечки.

Если при открытой системе теплоснабжения необходимо выделить количество Гкал, пошедших на ГВС, то могут понадобиться дополнительные расчеты. Все зависит от того, как организован учет. Есть ли на трубе ГВС приборы, подключенные к теплосчетчику, или там стоит вертушка.

Если приборы есть, то теплосчетчик должен сам все посчитать и выдать отчет, при условии, что все настроено правильно. Если стоит вертушка, то рассчитать количество Гкал пошедших на ГВС можно по формуле. . Не забудьте вычесть Гкал пошедшие на ГВС из общей суммы Гкал по счетчику.

Закрытая система подразумевает, что теплоноситель не берется из системы. Иногда проектанты и монтажники узлов учета забивают в проект и программируют теплосчетчик на другую формулу:

Q = G1 * (t1 - t2) / 1000 = ... ГКал

Qи - количество потребленной тепловой энергии, Гкал.

G1 - расход теплоносителя в подающем трубопроводе, т (м.куб.)

t1 - температура теплоносителя в подающем трубопроводе, °С

t2 - температура теплоносителя в обратном трубопроводе, °С

Если произойдет утечка (аварийная или умышленная), то по формуле теплосчетчик не зафиксирует количество потерянных Гкал. Такая формула не устраивает теплоснабжающие компании, нашу по крайней мере.

Тем не менее есть узлы учета, которые работают по такой формуле расчета. Я сам несколько раз выдавал Потребителям предписания, чтобы перепрограммировали теплосчетчик. При том, что когда Потребитель приносит отчет в теплоснабжающую компанию, то НЕ видно по какой формуле ведется расчет, можно просчитать конечно, но просчитывать вручную всех Потребителей крайне затруднительно.

Кстати, из тех теплосчетчиков для поквартирного учета теплоты, которые я видел, ни один не предусматривает измерение расхода теплоносителя в прямом и обратном трубопроводе одновременно. Соответственно, посчитать количество потерянных, например при аварии, Гкал невозможно, а также количество потерянного теплоносителя.

Условный пример:

Исходные данные:

Закрытая система отопления. Зима.
теплоэнергия - 885,52 руб. / Гкал
сетевая вода - 12,39 руб. / м.куб.

теплосчетчик выдал следующий отчет за сутки:

Допустим, что на следующий день произошла утечка, авария например, утекло 32 м.куб.

теплосчетчик выдал следующий суточный отчет:

Погрешность расчетов.

При закрытой системе теплоснабжения и при отсутствии утечек, как правило, расход в подающем трубопроводе больше, чем расход в обратном. Т. е. приборы показывают, что заходит одно количество теплоносителя, а выходит немного меньше. Это считается нормой. В системе теплопотребления могут быть нормативные потери, маленький процентик, небольшие подтеки, протечки и т.п.

Кроме этого, приборы учета несовершенны, у каждого прибора есть допустимая погрешность, установленная заводом изготовителем. Поэтому бывает, что при закрытой системе заходит одно количество теплоносителя, а выходит больше. Это тоже нормально, если разница в пределах допустимой погрешности.

(см. Правила учета тепловой энергии и теплоносителя п.5.2. Требования к метрологическим характеристикам приборов учета)

Погрешность(%) = (G1-G2)/(G1+G2)*100

Пример, если погрешность одного расходомера, установленная заводом изготовителем ±1%, то суммарная допустимая погрешность составляет ±2%.

Введение

После изготовления практически все приборы учета тепловой энергии одинаковы. Однако, если брать приборы учета в процессе работы и эксплуатации, все они разные, в своей работе имеют мало общего, сходства в их работе очень мало. Показания прибор учета могут иметь погрешность, которая может привести к переплате за ресурсы тепловой энергии или наоборот. В том случае, если показания занижены, у теплоснабжающей организации могут возникнут вопросы к потребителям тепловой энергии. Вскрыться данный факт может при первой же проверке показаний. Вследствие этого, теплоснабжающая организация будет настаивать на внеочередной поверке приборов учета тепловой энергии, которую будет оплачивать теплоснабжающая организация. В том случае, если занижение показаний произошло по вине потребителей, теплоснабжающая организация будет добиваться того, чтобы все затраты связанные с проведением демонтажа, поверкой и монтажом прибора учета легли на потребителей. В большинстве случаев, дело рассматривается в суде. В этом случае, потребитель будет вынужден оплатить средства на судебные тяжбы, которые понесла теплоснабжающая организация.

В случае, если показания завышены, виновным будет признана теплоснабжающая организация, потребитель имеет право подать заявление в суд на возмещение сверхзаплаченных денег, а также неустойку и возмещение морального вреда. Отметим, что расходы на адвоката, которые понесет потребитель, он также имеет право взыскать с теплоснабжающей организации в судебном порядке. Договориться без судебных тяжб очень тяжело, но советуем вам все-таки попробовать это сделать, т.к. судебные тяжбы могут затянуться на месяцы и годы.

Наиболее частое нарушение, которое приводит к неправильному расчету показателей теплосчетчиком, является их неправильная установка. В настоящее время, на рынке много организаций, которые обещают Вам установку УУТЭ за минимальную цену. Прежде чем заказать установку узла учета тепловой энергии, проверьте лицензии и отзывы о них. В наше время, многие организации пытаются снизить затраты на специалистах, что в конечном итоге может привести не только к погрешностям в показаниях, но и поломке прибора, ремонт которого обойдется гораздо дороже, чем услуга квалифицированного специалиста. Не следует смотреть на цену выполнения работ, сэкономив на этом, вы можете заплатить намного больше за дальнейшие последствия.


Рис. 1.

Основные нарушения при установке приборов учёта тепловой энергии

1. В целях экономии подключение комплекта термопреобразователей с трёх- или четырёхпроводной схемой подключения выполняется по двухпроводной схеме. Были случаи, когда такой монтаж выполнялся телефонным проводом или проводом с сечением 0,22 мм 2 (рекомендовано не менее 0,35 мм 2), что приводило к ошибке при измерении температуры более 10 о С, при этом погрешность измерений теплосчётчика возрастает до 50%.

2. Если в гильзах для датчиков температуры отсутствует масло, это, в конченом итоге, приводит к ошибкам в расчете. Максимальная погрешность составляет 4 градуса. В денежном выражении, приблизительный убыток составляет 30 тысяч рублей. При расходе в 8 т/ч (а это расход теплоносителя, характерный для четырёх подъездной пятиэтажки), погрешность измерений тепловой энергии составляет 0,032 Гкал/ч или 0,768 Гкал в сутки. В денежном выражении - приблизительно 30 тыс. руб. в месяц.

3. В трубопроводе системы отопления с диаметром 32 или 40 мм установлены термопреобразователи - преобразователи температуры, длина которых значительно превышает диаметры трубопроводов. Если на трубопроводе малого диаметра такой термопреобразователь установлен без применения расширителей трубопровода, то его рабочая часть будет значительно выступать за пределы трубопровода, поэтому прибор не может достоверно измерять температуру теплоносителя. Следовательно, точность и погрешность измерений счётчика не соответствует заявленной производителем, и такой счётчик не может считаться коммерческим.

4. Для снижения объёма работ, при установке теплосчетчика, датчики температуры устанавливаются в грязевики. В результате, их рабочая поверхность располагается в вне системы движения потока энергии. Отсутствие изоляции также негативно сказывается на передаваемых показаниях. В результате, показания погрешность составляет 5-7 градусов. Если выразить данную погрешность в денежном эквиваленте, получается 108 тысяч рублей (девятиэтажный дом с четырьмя подъездами)

5. Иногда, вместо датчиков температуры, например КТПТР (КТСПН), которые прописаны в проекте, заменяют одиночными, например ТСП100. Отметим, что дополнительная погрешность может достигать 3%, что скажется на парвильности передаваемых данных.

6. Отсутствие повсеместно теплоизоляции верхней части преобразователей сопротивлений, особенно, если эти участки расположены на улице. Понятно, что в данном случае будет присутствовать дополнительная погрешность измерения температуры, и, как следствие, точность и погрешность измерения теплоэнергии.

7. Преобразователи расхода должны быть установлены в трубопроводе через паронитовые прокладки. Очень часто, при демонтаже преобразователя расхода для госповерки, мы извлекаем паронитовые прокладки с внутренним, прорубленным зубилом, треугольным или прямоугольным отверстием (рис. 2). О какой точности измерений можно говорить, если поток воды в расходомерах в данном случае непредсказуем?

Рис. 2. Расходомер, на котором была установлена квадратная прокладка.

8. Электромагнитные преобразователи расхода (в исполнении «сэндвич») должны монтироваться в систему с применением динамометрического ключа, с обязательной установкой дополнительных демпфирующих прокладок. Повсеместно на объектах наблюдаются нарушения этих рекомендаций, что приводит к изменению внутреннего диаметра фторопластовой футеровки расходомерного устройства, нарушению зазоров между футеровкой и электродами съёма информации о скорости потока теплоносителя и значительной погрешности измерения расхода теплоносителя (рис. 3).

Рис. 3. На расходомере были установлены не подлинная проставка, также не был установлен магнитно-сетчатый фильтр.

9. В целях экономии, при монтаже расходомерных устройств, вместо рекомендованных заводами-изготовителями фланцев с центрирующими углублениями, применяются стандартные фланцы. При этом первичные преобразователи расхода могут устанавливаться со смещением до 10 мм от оси трубопровода. Трудно установить при этом погрешность измерения расхода счётчиком тепла по данному трубопроводу.

10. Применение повсеместно вместо паронитовых прокладок - резиновых, толщиной 3-4 мм. Неравномерное сжатие резины приводит к несоосности (перекосу) расходомеров и повышению погрешности измерений теплосчётчика. Внутренний диаметр здесь также из-за сжатия резины выдержать невозможно. Это, кстати, одна из основных причин, почему приборы на стенде идут с нулевой погрешностью, а по месту погрешность измерений превышает установленную для теплосчётчика. Если погрешность измерения показывает утечку, соответственно, за неё переплачивает потребитель. Если наоборот, то перерасход подпитки тепловой сети фиксируется у теплоисточника. В таком случае показания не принимают к учёту, а сам теплосчётчик попросту бракуют.

11. При монтаже расходомеров наблюдаются случаи, когда кабели соединяются с ними таким образом, что водяной конденсат по кабелю затекает внутрь преобразователя расхода теплосчётчика, искажая сначала результат измерений, а затем приводя к выходу из строя первичный преобразователь расхода (рис. 4).

12. Имеются объекты, где для измерения расхода теплоносителя (особенно это касается горячей воды в системах с переменным расходом (установлены различные регуляторы поддержания температуры в системе отопления или ГВС)) устанавливаются счётчики, не соответствующие реальным нагрузкам. При низком расходе погрешность приборов расхода не позволяет применять его для целей коммерческого учёта тепловой энергии.

14. При проверке на ряде объектов часть приборов имеет просроченные сроки поверки, или приборы не исправны. О какой погрешности измерений можно говорить в данном случае - не знает никто.

Заключение

Точность расчета тепловой энергии напрямую зависит от сделанного монтажа и качества обслуживания. Поэтому очень важно, чтобы проектированием, обслуживанием и монтажом УУТЭ занимались профессионалы, которые имеют необходимую специализацию. Сотрудники организации должны иметь удостоверения по электробезопасности и охране труда. В пример предоставим рисунок 5, на котором показана разница между прибором учета, который обслуживала квалифицированная организация и нет.

Рис. 5. Разница между приборами, которые обслуживали правильно и нет.

Счетчик – неотъемлемый элемент электросетей, функцией которого является учет потребления энергии. Как и любое другое измерительное устройство, он обладает определенным значением точности производимых замеров и склонен к погрешностям при подсчете. В норме отклонения, как правило, не превышают 1-2 процентов в ту или иную сторону. Но что делать, если показатели счетчика откровенно не соответствуют реальному потреблению электроэнергии? Ведь, если устройство завышает показания – это чревато лишними расходами на счета за свет, а при заниженных цифрах – возможны претензии и санкции со стороны компании, осуществляющих электроснабжение. Разобраться с этим, а также определить корректность работы измерительного прибора поможет эта статья.

При проверке электросчетчика первым делом следует выяснить, не склонно ли устройство к самоходу – самопроизвольной работе при отсутствии электрических нагрузок. Для этого необходимо отключить всех потребителей, а еще лучше – выкрутить пробки или перевести автоматические предохранители в неактивное положение. Важно, чтобы сам счетчик оставался под напряжением. Затем следует обратить внимание на индикаторы прибора: диск индукционного электросчетчика не должен самопроизвольно осуществлять движения, а светодиодный индикатор электронного устройства – не должен мерцать.

Если в течении 15 минут отключения электроприборов наблюдались заметные передвижения диска или импульсы светового индикатора – можно говорить о присутствии самохода. В таких случаях рекомендуется обратиться к компании-поставщику электроэнергии, с целью временной замены учетного прибора и его ремонта.

Если явление самохода не было выявлено – следует переходить к следующему этапу проверки.

Для этого эксперимента необходим любой электроприбор, мощность которого вы точно знаете. Подойдет лампа накаливания, мощностью 100 Ватт или другое устройство, потребляемая мощность которого отличается стабильным показателем, а также – секундомер.

Предварительно необходимо отключить все потребляющие электроприборы из сети. Те из них, что находятся в режиме ожидания и неактивны на данный момент – следует полностью обесточить, вынув вилку из розетки.

Необходимо включить в сеть только то устройство, которое послужит экспериментальным эталоном измерения. Запускаем секундомер и отсчитываем время совершения счетчиком 5-10 полных оборотов диска или время между 10-20 импульсами светодиода электронного прибора.

Затем вычисляем время одного импульса/оборота, по формуле t=T/n, где T – общее время, n-количество оборотов/импульсов.

После этого необходимо узнать передаточное число счетчика (количество оборотов/импульсов, равное потребленной энергии в объеме 1 кВтч). Как правило, эта характеристика наносится на панель прибора.

Погрешность счетчика подсчитывается с помощью следующей формулы:

E = (P*t*x/3600 – 1) *100%

Где E – погрешность электросчетчика в процентах (%), P – Мощность потребляющего устройства в киловаттах (кВт), t – время одного импульса в секундах (с), x – передаточное число учетного прибора, а 3600 – количество секунд в одном часу.

Например, проверим электронный счетчик, с передаточным числом 4000 импульсов/кВтч (как на иллюстрации). В качестве тестового прибора – используем «лампочку Ильича», мощностью 100 Ватт (0.1 кВт). Засекаем с помощью таймера время, за которое счетчик совершит 20 импульсов, получаем T=186 с. Рассчитываем время одного импульса, поделив 186 на 20, получаем 9.3 с.

Значит, E = (0.1*9.3*4000/3600 – 1)*100%, что на практике равно 3.3%. Так как результатом стало отрицательное число – счетчик работает с отставанием, которое составляет немногим более 3%.

Так как погрешность небольшая, а потребление лампы составляет не точно 100 Вт (может быть 95 или 110, например) – столь малым отклонениям значения придавать не следует, и можно считать работу учетного прибора нормальной.

В случае если электроприбор, используемый для проверки, обладает фиксированным потреблением, которое остается стабильным, а секундомер дает абсолютную точность - то счетчик может считаться таким, который имеет погрешность выше нормы - в случае отклонения полученных результатов от нормы более, чем на показатель, соответствующий классу точности (класс точности 2, например, означает допустимыми отклонения +-2%).

Loading...Loading...