Схемы ру с одной системой сборных шин. Система сборных шин


В устройствах рассматриваемого вида (рис. 5.1, а ) каждое присоединение

содержит в общем случае выключатель и два разъединителя - шинный и

линейный. Выключатели, как известно, служат для неавтоматического и автомати-

ческого отключения и включения присоединений. Разъединители необходимы для

изоляций аппаратов и присоединений на время их ремонта от смежных частей

системы, находящихся под напряжением.

Рис.5.1. Принципиальная схема РУ с одной системой сборных шин.

а - шины не секционированы; б - секционированные шины; в - секционированные шины и

обходное устройство.

Термин «изоляция» следует понимать как создание видимого разрыва цепи в

воздухе, обеспечивающего безопасность для людей. Так, например, при ремонте

выключателя какого-либо присоединения он должен быть изолирован от сбор-

ных шин и от сети, поскольку линия, отключенная со стороны источника энергии,

может оставаться включенной с противоположного конца. Только в частных

случаях, когда возможность подачи напряжения с противоположного конца

исключена, линейные разъединители могут отсутствовать. Это относится, на-

пример, к присоединениям двухобмоточных трансформаторов, поскольку ремонт

выключателя производится при отключенном трансформаторе со стороны

высшего и низшего напряжения. В присоединениях генераторов линейные

разъединители также обычно не предусматриваются.

В рассматриваемой схеме операции с разъединителями допускаются только

при отключенном выключателе соответствующего присоединения. Ясность этого

требования и простота РУ практически исключают ошибочные операции с

разъединителями. Тем не менее предусматриваются блокирующие устройства,

препятствующие неправильным операциям.

Достоинство рассматриваемой схемы с одной системой сборных шин

заключается в ее исключительной простоте и, следовательно, низкой стоимости.

Недостатки ее следующие:

Профилактический ремонт сборных шин и шинных разъединителей связан

с отключением всего устройства на время ремонта;

Ремонт выключателей и линейных разъединителей связан с отключением

соответствующих присоединений, что нежелательно, а в некоторых случаях

недопустимо;

Короткое замыкание в зоне сборных шин приводит к полному отключению

То же самое имеет место в случае внешнего замыкания и отказа

выключателя соответствующего присоединения.

Перечисленные недостатки могут быть частично устранены с помощью

указанных ниже дополнительных устройств. Приведенные затраты при этом

увеличиваются.Чтобы избежать полного отключения РУ при замыкании в зоне

сборных шин и обеспечить возможность их ремонта по частям, прибегают к

секционированию сборных шин, т. е. разделению их на части - секции с

установкой в точках деления выключателей, нормально замкнутых или нормально

разомкнутых, в зависимости, от преследуемой цели. Эти выключатели называют

секционными. Относительно редко встречаются устройства, сборные шины

которых секционированы через разъединители, замкнутые или разомкнутые при

нормальной работе. Секционирование должно быть выполнено так, чтобы каждая

секция имела источники энергии (генераторы, трансформаторы) и соответствую-

щую нагрузку (рис. 5.1,6 ). Присоединения распределяют между секциями с таким

расчетом, чтобы вынужденное отключение одной секции по возможности не

нарушало работы системы и электроснабжения потребителей. Число секций

зависит от числа и мощности источников энергии, напряжения, схемы сети и

режима установки. В РУ с большим числом секций сборные шины замыкают в

На станциях секционные выключатели при нормальной работе, как правило,

замкнуты, поскольку генераторы должны работать параллельно. В случае к.з. в

зоне сборных шин поврежденная секция отключается автоматически. Остальные

секции остаются в работе. Таким образом, секционирование через нормально

замкнутые выключатели способствует повышению надежности РУ и

электроустановки в целом. Заметим, однако, что в случае замыкания в секционном

выключателе отключению подлежат две смежные секции, следовательно, в

устройствах с двумя секциями полное отключение не исключено, хотя

вероятность его относительно мала.

В РУ низшего напряжения 6-10 кВ подстанций секционные выключатели,

как правило, разомкнуты в целях ограничения тока к.з. Выключатели снабжают

устройствами автоматического включения резервного питания (АВР), замы-

кающими выключатели в случае отключения трансформатора, чтобы не нарушать

электроснабжения потребителей.

Чтобы обеспечить возможность поочередного ремонта выключателей, не

нарушая работы соответствующих цепей, предусматривают (преимущественно в

РУ 110-220 кВ) обходные выключатели и обходную систему шин с соответст-

вующими разъединителями в каждом присоединении (рис. 5.1, в). При

нормальной работе установки обходные разъединители и обходные выключатели

отключены. Замена рабочего выключателя обходным производится в следующем

порядке: включают обходный выключатель, чтобы убедиться в исправности

обходной системы; отключают обходный выключатель; включают обходный

разъединитель ремонтируемого присоединения; вновь включают обходный

выключатель; отключают выключатель, подлежащий ремонту, и соответствующие

разъединители. Защита цепи во время ремонта осуществляется обходным

выключателем, снабженным соответствующим комплектом релейной защиты.

В устройствах с секционированными сборными шинами и обходной

системой шин (рис. 5.1, в ), строго говоря, необходимы два обходных

выключателя. Однако в целях экономии средств часто ограничиваются одним

выключателем с двумя шинными разъединителями, с помощью которых

обходный выключатель может быть присоединен к той или другой секции

сборных шин.

Распределительные устройства с одной секционированной системой

сборных шин получили применение на станциях и подстанциях при номинальных

напряжениях до 220 кВ включительно. Основным условием применения этой

схемы является наличие достаточного резерва в источниках энергии и линиях и,

следовательно, возможность кратковременного отключения одной из секций без

нарушения работы электроустановки в целом. Аналогичные устройства, но с об-

ходной системой шин, применяют при ограниченном числе присоединений в

качестве устройств среднего напряжения 110-220 кВ станций и подстанций.__

Первоначально надо понять, что такое система шин и секции шин отдельно, а потом уже разбираться, чем отличается система шин от секции шин. На первый взгляд, кажется, что несложно найти пояснения всем специализированным терминам, но намного сложнее разобраться в исключениях из правил или многоплановом использовании шинопроводов разных типов и категорий. Постараемся в статье распознать, чем отличается система шин от секции шин, более подробно, делая акценты на основные технические характеристики и спектры возможностей.

Что такое система шин и почему могут возникать путаницы при определении силового кабеля?

Первоначально воспользуемся определением «система шин» из технической литературы, и поймем, что под данным понятием подразумевается специальный комплект элементов. Эти элементы могут быть связаны между собой, формируя работоспособную энергосистему. Абсолютно все элементы присоединены к электрическим распределительным устройствам, поэтому и способны бесперебойно и по назначению функционировать.

Важно помнить! Все существующие распределительные устройства на подстанциях отличаются номинальным, то есть прописанным в технических документах, уровнем напряжения, а также определенной мощностью генераторов, трансформаторов. Каждая созданная сеть рассчитана на определенную мощность, режим работы и на количество обслуживаемых объектов.

И если, например, потенциальному заказчику для реализации проекта будет необходимо использовать распределительные устройства с одной системой шин, то само энергооборудование будет содержать выключатель и два разъединителя. Один – шинный, а второй – линейный.

В кругу специалистов для понятия «система шин» ввели синоним – «сборные шины». И если о них заходит разговор, то каждый понимает, что речь идет о стандартном устройстве, которое представляет собой продуманную систему шинопроводов. И все элементы системы фиксируются на специальных опорах, при этом защищены изоляционным материалом или специальными внешними коробами. Их монтаж проходит в специально отведенных для этого помещениях, технических коридорах. Первостепенная задача системы шин или сборных шин – сформировать энергетический канал с бесперебойной подачей необходимых силовых импульсов к имеющимся объектам и ответвленным магистралям.

Системы шин перед эксплуатацией обязательно тестируются, то есть разработчики и производителя всегда планово проводят типовые испытания систем шин и секций шин, и в этом отличий нет.

Если к системе шин планируют создать отходящие присоединения, то применяют отпайки, через которые и запитывают новые элементы.

Что такое двойная система шин и как она формируется специалистами?

Первоначально представьте, что специалистами создана система шин, она успешно функционирует. Потом возникает необходимость расширять проект, увеличивать подачу мощности. Тогда специалисты могут посоветовать заказчику создать двойную систему шин. Она обычно создается для обеспечения резервирования одной системы шин.

Для монтажа и комплектации слаженной системы используются разъединители, рубильники, дополнительные выключатели органично дополняют уже имеющиеся присоединения с первой системы.

Иногда бывает так, что в двойной системе одна из шинных систем делается рабочей, а вторая – резервной, то есть вспомогательной, аварийной, запасной, на случай, если будет необходимо увеличить подачу напряжения, возобновить подачу импульса. Но чаще всего на силовых подстанциях коммутация или соединение электрических цепей происходит параллельно, то есть для одних присоединений формируется одна система шин, а вторая обслуживает другие участки.

Что такое обходная система шин или как прожить без форс-мажорных ситуаций?

Представим ситуацию, что одна из цепей была повреждена или замечены сбои в секции шин, нарушается работа целой системы. Нормально функционировать энергооборудование уже не может, поэтому необходимо проводить ремонтно-профилактические работы, выполнять диагностику цепи. И в таких форс-мажорных случаях при работе секций шин и системы шин в выигрыше остаются собственники объектов с обходной системой шин. В чем ее преимущества?

  • Обходная система шин обеспечивает нормальную коммутацию на подстанциях, когда идет присоединение к распределительным устройствам нескольких систем, которые функционируют либо одновременно, либо попеременно.
  • Обходная система шин обеспечивает должную защиту секций шин, позволяет переводить систему в ремонтный режим. А это значит, что когда одна из систем отключается или аварийно выходит из строя, то на подстанции срабатывает резервное подключение, то есть вступает в действие обходная система шин.
  • Обходная система шин переводит в резерв не существующие две системы шинопроводов, а стандартные выключатели любого из имеющихся присоединений. И это становится возможным благодаря продуманным подключениям обходной системы к каждому присоединению через разъединитель.

Таким образом, становится понятнее, что ж такое система шин. Это понятие является широким в энергосистеме, так как существует несколько типов и видом систем шин, а все они могут секционироваться, то есть разделяться на секции шин распределительных устройств. И это свойство очень важное и полезное, так как при сегментации шин удается обеспечить подстанции большую надежность. И когда степень секционирования НКУ такова, что позволяет выделить поврежденный участок в системе шин, провести ремонтные работы, оставляя при этом в работе часть присоединений.

Что такое секции шин и насколько они важны для функционирования шинопроводов?

В технической литературе имеется определение «секций шин», и оно звучит следующим образом: секции шин – это определенные части системы шин, отделенные друг от друга коммутационными аппаратами. В сущесвующих ГОСТах прописаны различные типы секционирования. И чаще всего выделяют шесть типовых форм секционирования, а именно:

  1. Системы шин без внутреннего разделения, когда главная шина, вводные и выводные функциональные блоки, распределительные шины функционируют одной системой, не разделяются на блоки перегородками или барьерами.
  2. Системы шин с разделением шин и узлов функционирования, но при этом зажимы для внешних проводников от шин не разделяются барьерами из металла или пластика.
  3. Сегментирование шин и функциональных узлов с зажимами внешних проводников.
  4. Разделение функциональных узлов друг от друга, а также от имеющихся шин. Дополнительно барьерами отделены зажимы внешних проводников от блоков, но с шинами у них остается взаимосвязь.
  5. Разделение всех имеющихся в системе функциональных узлов друг от друга, а также от шин. Зажимы внешних проводников находятся в одном блоке, поэтому отделены и от шин, и от функциональных узлов. При таком сегментировании легко проводить испытания секции сборных шин, ее ремонтировать и вводить в эксплуатацию.
  6. Система шин, когда функциональные узлы находятся в одном отсеке с зажимами внешних проводников.

Таким образом, существует шесть типов сегментирования, когда проявляются разные варианты изоляции и взаимодействия главной шины, функциональных блоков, распределительных шин, зажимов для отходящих проводников. При любой комплектации система шин работоспособна.

Для чего надо рекомендуется выполнять сегментацию шин и почему без этого не обойтись?

Для разделения основных элементов системы шин используют перегородки или металлические барьеры. Они необходимы, чтобы повысить безопасность персонала, который обслуживает энергосистему и локализировать нежелательные процессы.

При правильной сегментации ремонтные работы не будут останавливать процесс, все формы секционирования НКУ позволяют все восстановить быстро, без остановки системы.

Таким образом, обходная секция шин позволяет создать достойную функционирующую систему шинопроводов, которые и легко монтировать, и обслуживать, то есть вовремя выполнять технические осмотры, тестирование, ремонтные работы. В итоге становится понятно, что система шин – это комплект шинопроводов, которые для оптимизации лучше поддавать сегментированию, чтобы улучшить процесс подачи энергоимпульса при обслуживании нескольких силовых линий или объектов.


В устройствах, изображенных на рис.1 а, каждое присоединение содержит выключатель и два разъединителя – шинный и линейный.


Рис. I. Принципиальная схема РУ с одной системой сборных шип. а - шины не секционированы: 6 - секционированные шины: в – секционированные шины и обходное устройство

Операции с разъединителями допускаются только при отключенном выключателе соответствующего присоединения.

Достоинство рассматриваемой схемы с одной системой сборных шин:

1. Простота РУ, что практически исключают ошибочные операции с разъединителями. Тем не менее, предусматриваются блокирующие уст­ройства, препятствующие неправильным операциям.

2. Низкая стоимость.

Недостатки ее следующие:

1. Профилактический ремонт сборных шин и шинных разъединителей связан с отключением всего устройства на время ремонта:

2. Ремонт выключателей и линейных разъединителей связан с от­ключением соответствующих присоединений, что нежелательно, а в некоторых случаях недопустимо;

3. Короткое замыкание в зоне сборных шин приводит к полному от­ключению РУ:

4. То же самое имеет место в случае внешнего замыкания и отказа выключателя соответствующего присоединения.

Чтобы избежать полного отключения РУ при замыкании в зоне сборных шин и обеспечить возможность их ремонта по частям, прибегают к секционированию сборных шин, т. е. разделению их на части - секции с установкой в точках деления выключателей. Эти выключатели называют

секционными (рис 1.б). Редко встречаются устройства, сборные шины которых секционированы через разъединители. Секционирование должно быть выполнено так, чтобы каждая секция имела источники энергии (генераторы, трансформаторы) и соответствующую нагрузку. Присоединения распределяют между секциями так, чтобы вынужденное отключение одной секции не нарушало электроснабжения потребителей.

При нормальной работе секционные выключатели замкнуты, т.к. генераторы должны работать параллельно. В случае к.з. в зоне сборных шин поврежденная секция отключается автоматически. Остальные секции остаются в работе. Таким образом, секционирование способствует повышению надежности РУ.

В РУ низшего напряжения 6-10 кВ подстанций секционные

выключатели разомкнуты в целях ограничения тока к.з.

Выключатели снабжают устройствами автоматического включения резервного питания (АВР), замыкающими выключатели в случае отключения трансформатора, чтобы не нарушать электроснабжения потребителей.

Для обеспечения возможности поочередного ремонта выключателей, не нарушая работы соответствующих цепей, предусматривают обходные выключатели и обходную систему шин с разъединителями в каждом присоединении (рис. 1 в). При нормальной работе установки обходные разъединители и обходные выключатели отключены.



Распределительные устройства с одной секционированной системой сборных шин применяется в РУ до 220 кВ включительно. Устройства с одной секционированной системой сборных шин (без обходной системы) применяют в качестве РУ 6-35 кВ подстанции, РУ 6 – 10 кВ станций типа ТЭЦ. Аналогичные устройства, но с обходной системой шин, применяют при ограниченном числе присоединении в110 – 220 кВ.

Страница 2 из 7

I. СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ СБОРНЫХ ШИН 6-10 кВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ
Сборные шины 6-10 кВ являются главным элементом распределительного устройства генераторного напряжения, сооружаемого, как правило, на теплоэлектроцентралях (ТЭЦ). Они предназначены для приема электроэнергии, поступающей от генераторов, трансформаторов связи, и ее распределения между отходящими от этих шин кабельными или воздушными потребительскими линиями. Надежность и бесперебойность электроснабжения потребителей в значительной мере зависят от надежности сборных шин.
На генераторном напряжении ТЭЦ 6-10 кВ применяются обычно следующие схемы первичных электрических соединений:

  1. одиночная секционированная система сборных шин;
  2. двойная секционированная система шин с одним выключателем на цепь (при этом секционируется только рабочая система шин).

Обе эти схемы могут выполняться в двух модификациях:
а) прямолинейная схема при количестве секций от двух до трех;
б) схема «кольца» при количестве секций больше трех.

По условиям электродинамической стойкости электрооборудования в настоящее время предусматривается подключение к каждой секции шин генератора мощностью не более 63 МВт при генераторном напряжении 6 кВ, а при напряжении 10 кВ - не более одного генератора мощностью 100 МВт или двух генераторов мощностью по 63 МВт. Этим ограничивается уровень токов короткого замыкания (КЗ) на сборных шинах 6-10 кВ. Кроме того, для дополнительного ограничения уровня токов КЗ при повреждениях на сборных шинах, в цепи генераторов и в сети на шинах устанавливают секционные реакторы. Связь с энергосистемой обычно осуществляется с помощью двух- обмоточных или трехобмоточных трансформаторов связи, обмотки высокого напряжения которых присоединяются к сборным шинам напряжения 35 кВ и выше.

Одиночная секционированная система сборных шин.

На рис. 1 приведена схема первичных соединений электростанций с одной системой сборных шин 6 кВ, состоящей из трех секций, соединенных с помощью последовательно включенных выключателей и секционных реакторов.
Подключение каждого присоединения (генератора, трансформатора, линии) к сборным шинам производится через выключатели и шинные разъединители. Разъединители предназначены для создания видимого разрыва цепи при ремонтных работах и не являются оперативными элементами. Операции с разъединителями допускаются только при отключенном выключателе присоединения, для чего предусматриваются специальные схемы блокировки.

Секционирование сборных шин с помощью секционных выключателей (СВ) выполняется таким образом, чтобы каждая секция имела источники питания (генераторы, трансформаторы) и соответствующую нагрузку. Присоединения должны быть распределены между секциями так, чтобы при выходе из строя одной из секций сборных шин ответственные потребители продолжали получать питание от секции, оставшейся в работе. В связи с тем что на электростанциях генераторы работают параллельно, секционные выключатели при нормальной работе включены.
При КЗ на секции сборных шин поврежденная лекция обесточивается путем отключения питающих элементов и секционных выключателей после срабатывания соответствующей релейной защиты, а неповрежденные секции остаются в работе.
На рис. 1 показана схема сборных шин с тремя секциями и двумя секционными реакторами. Нагрузку между секциями сборных шин обычно распределяют равномерно, поэтому в нормальном режиме через секционный реактор проходит незначительный ток, потери мощности и энергии в нем малы, а напряжения на секциях примерно одинаковы. Для выравнивания напряжения на секциях сборных шин и улучшения условий питания нагрузки при отключении питающих элементов на одной из секций в схеме предусмотрены разъединители, шунтирующие секционные реакторы. Шунтирование секционных реакторов допускается в тех случаях, когда после этого расчетный уровень токов КЗ не превосходит допустимого для электрооборудования.
Линейные реакторы применяются для ограничения тока КЗ при повреждениях на отходящих кабельных линиях. Кроме того, они способствуют поддержанию остаточного напряжения на сборных шинах электростанции, что повышает устойчивость параллельной работы генераторов и надежность питания потребителей электроэнергией. При необходимости значительного ограничения тока КЗ в сети устанавливают реакторы в каждой кабельной линии. Однако допускается подключение к одному реактору двух и более кабельных линий одного или различных потребителей. В последнем случае каждая кабельная линия должна присоединяться через отдельный разъединитель.
Если к шинам станции должно быть присоединено большое количество кабельных линий, как правило, применяется групповое реактирование. При этом удешевляется конструкция распределительного устройства (РУ), уменьшается число присоединений к сборным шинам, повышается надежность работы электроустановки в целом. Однако в схеме с групповыми реакторами КЗ на одной из линий приводит к снижению напряжения на всех линиях, присоединенных к той же кабельной сборке.
На рис. 1 показано РУ 6 кВ при следующей схеме включения элементов отходящих линий: шины - выключатель- реактор - линия. Такая схема применена на ряде электростанций с генераторами мощностью менее 63 МВт. При этом выключатель не рассчитан на отключение КЗ до реактора.


Рис. 2. Схема электрических соединений одиночной системы шин 10 кВ
Питание собственных нужд (СН) электростанции производится здесь от одинарных реактированных линий СН 6 кВ. Они подключаются к сборным шинам аналогично линиям потребителей.
На рис. 2 приведена схема первичных соединений электростанции с одиночной секционированной системой сборных шин 10 кВ. Она отличается отсутствием реактированных линий 6 кВ СН и наличием трансформатора СН (ТСН) 10/6 кВ.
Показанная на рис 2 схема включения элементов отходящих потребительских линий (шины - реактор - выключатель- линия) обычно применяется на напряжении 6- 10 кВ на электростанциях с генераторами мощностью 63-100 МВт. Для повышения надежности электроснабжения потребителей, питающихся от шин 6-10 кВ, применяют комплектные РУ 6-10 кВ, позволяющие при ремонте выключателя производить быструю замену ячейки. Время перерыва питания ответственных потребителей при этом может быть минимальным.
Число секций в PV зависит от числа и мощности источников питания. При одиночной секционированной системе шин с прямолинейной схемой секционные реакторы выбираются по номинальному току таким образом, чтобы при выходе из работы генератора на одной из крайних секций на нее могла быть подана мощность, соответствующая нагрузке этой секции. Так как она обычно меньше мощности генератора, номинальный ток секционного реактора, как правило, принимается равным 60-80% номинального тока генератора (генераторов) данной секции.


Рис. 3. Схема электрических соединений одиночной системы шин 10 кВ, соединенной в «кольцо»
При числе секций, большем трех, во избежание перетоков мощности вдоль сборных шин и для создания крайним и средним секциям одинаковых эксплуатационных условий одиночную секционированную систему шин, как указано выше, замыкают в кольцо.
На рис. 3 приведена схема электростанции со сборными шинами, соединенными в «кольцо». Шины здесь секционированы на четыре части - по числу установленных генераторов. Крайние секции / и IV с помощью выключателя и секционного реактора соединены между собой и образуют замкнутое кольцо. В нормальном режиме все секционные выключатели включены и генераторы работают параллельно. Трансформаторы связи подключены симметрично к секциям / и ///. Секционные реакторы рассчитаны на режим питания нагрузки секции при выходе из строя любого питающего элемента. Номинальный ток секционных реакторов в схеме «кольца» принимают равным 50-60 % номинального тока генератора.
Рассматриваемая схема обладает следующими преимуществами по сравнению с прямолинейной схемой: 1) при КЗ на любой секции шин отключаются два секционных выключателя, связанные с этой секцией, и поврежденная секция отделяется от неповрежденных; при этом не нарушается параллельная работа отдельных генераторов; 2) схема симметрична в отношении токов КЗ, так как при коротких замыканиях на любой из секций токи КЗ одинаковы; 3) при отключении одного из генераторов нагрузка, присоединенная к его секции, питается от других генераторов с двух сторон, что создает меньшую разницу напряжений на смежных секциях и позволяет выбрать секционные реакторы меньшей пропускной способности, чем при прямолинейной схеме. Однако на установку дополнительных секционного выключателя и реактора и создание перемычки между крайними секциями требуются соответствующие затраты.
Рассмотренные выше схемы с одной секционированной системой шин (рис. 1-3) просты, наглядны и недороги. К недостаткам схем следует отнести снижение надежности питания потребителей при ремонтах сборных шин и шинных разъединителей и при повреждениях на одной из секций сборных шин, так как при этом неответственные потребители (питающиеся по одной линии) теряют _ питание, а ответственные потребители (имеющие питание от разных секций) питаются по одной цепи. Однако несмотря на эти недостатки схемы с одиночной секционированной системой шин широко применяются на станциях небольшой и средней мощности при количестве присоединений на секцию до шести - восьми. При большем числе присоединений используют схемы с двумя системами сборных шин.

Двойная секционированная система шин.

На рис. 4 показана первичная схема электростанции с двумя системами сборных шин (рабочей и резервной). Рабочая система шин (СШ), как и в схемах с одиночной системой шин, секционируется, а резервная система шин, как правило, не секционируется. Кроме секционных выключателей, которые при нормальной работе включены, на каждой секции предусматриваются также шиносоединительные выключатели (ШСВ), отключенные в нормальном режиме. Каждое присоединение подключается к сборным шинам через развилку из двух разъединителей, один из которых нормально отключен.
Схема с двумя системами сборных шин позволяет:

  1. поочередно ремонтировать сборные шины без перерыва в работе станции и без нарушения питания потребителей;
  2. ремонтировать любой шинный разъединитель, отключая лишь одно присоединение (остальные присоединения переводятся на другую систему шин);
  3. быстро восстанавливать работу станции при повреждении на секции (потребители теряют питание только на время, необходимое для переключения оперативным персоналом соответствующих присоединений на резервную систему шин).


Рис. 4. Схема электрических соединений двойной системы шин 6 кВ
Такая система применяется при большом числе присоединений на секцию, особенно в тех случаях, когда потребители питаются по нерезервируемым линиям.
Шиносоединительные выключатели используются для перевода любых присоединений с одной системы шин на другую без их отключения, а также для замены в случае необходимости любого из присоединенных к шинам выключателей. Кроме того, наличие ШСВ позволяет отказаться от установки разъединителей, шунтирующих секционные реакторы.
Операции по переводу присоединений с одной секции шин на другую, а также при ремонте сборных шин и аппаратуры 6-10 кВ должны проводиться в определенном порядке. Рассмотрим, например, порядок операций при выводе в ремонт секции рабочей системы шин. При этом необходимо все присоединения этой секции перевести с рабочей
на резервную систему шин. Для этого прежде всего надо проверить исправность последней, т. е. провести ее опробование, что обычно осуществляют с помощью ШСВ, реже - с помощью секционного выключателя. Включая ШСВ, ставят резервную систему шин под напряжение, и если на резервной системе шин существует КЗ, ШСВ отключается от устройств релейной защиты.
В настоящее время опробование резервной системы шин производится с использованием защиты шин соответствующей секции. Если резервная система шин исправна, начинают поочередный перевод присоединений секции с рабочей на резервную систему шин, для чего включают шинный разъединитель резервной системы шин переводимого присоединения и затем отключают шинный разъединитель рабочей системы шин этого же присоединения. Эта операция безопасна для персонала, так как при включенном ШСВ ножи и неподвижные контакты разъединителей находятся под одинаковым напряжением. Чтобы при переводе присоединения избежать разрыва его разъединителем тока нагрузки, предусмотрена блокировка, запрещающая отключение одного из разъединителей при отключенном втором разъединителе данной цепи, если выключатель данного присоединения включен. По окончании перевода всех цепей (потребителей, источников питания и секционных выключателей) на резервную систему шин отключаются ШСВ и его разъединитель со стороны выводимой в ремонт секции. Следует отметить, что перед началом перевода присоединений с одной системы шин на другую необходимо предварительно снять оперативный ток с ШСВ и вывести его защиту из действия.
Рассмотренная схема кроме указанных выше преимуществ имеет и недостатки, основной из которых - использование шинных разъединителей в качестве оперативных элементов, что несмотря на наличие блокировок может привести к короткому замыканию на шинах при ошибочных действиях персонала. Недостатками схемы являются также увеличение числа шинных разъединителей, усложнение конструкции распределительного устройства.
Как и в схемах с одиночной секционированной системой шин, при числе секций, большем трех, рабочая секционированная система шин замыкается в кольцо.
Двойная секционированная система шин с фиксированным распределением присоединений. На рис. 5 показана схема двойной системы шин 10 кВ. Эта схема применяется для надежного питания собственных нужд электростанции.


Рис. 5. Схема электрических соединений двойной системы шин 10 кВ с фиксированным распределением присоединении

Генератор и все отходящие потребительские линии, а также рабочий трансформатор собственных нужд (а при напряжении 6 кВ - линия питания собственных нужд) присоединяются к рабочей системе шин, а к резервной системе шин присоединяются трансформатор связи с системой и резервный источник питания собственных нужд - трансформатор или линия. Шиносоединительный выключатель одной рабочей секции в нормальном режиме включен, и обе системы шин находятся под напряжением, а ШСВ других секций отключены.
Селективное отключение при КЗ только поврежденной системы шин (рабочей или резервной) обеспечивается специальными схемами релейной защиты.

Необходимость соединения между собой подводящих и отводящих электроэнергию линий обусловливает применение на станциях, подстанциях, распределительных устройствах и пунктах сборных шин.

К сборным шинам присоединяют все генераторы или трансформаторы, вводы и отходящие линии. Электрическая энергия поступает на сборные шины и по ним распределяется к отдельным отходящим линиям. Таким образом, сборные шины являются узловым пунктом схемы соединения, через который протекает вся мощность станции, подстанции или распределительного пункта . Повреждение или разрушение сборных шин означает прекращение подачи электроэнергии потребителям. Поэтому сборным шинам уделяют серьезное внимание при проектировании, монтаже и эксплуатации электроустановок.

Простейшей системой является так называемая одиночная система шин (рис. 1), применяемая в электроустановках малой мощности с одним источником питания.

Рис. 1. Одиночная система шин

На станциях и подстанциях, имеющих два и более трансформатора или генератора, в целях повышения надежности снабжения потребителей электроэнергией шины секционируют, т. е. делят на две, а иногда и большее число частей. К каждой секции должно быть присоединено по возможности равное число генераторов или трансформаторов и отходящих линий (рис. 2).

Рис. 2. Одиночная секционированная система шин с межсекционным разъединителем

Секционирование шин сообщает схеме большую эксплуатационную гибкость (при выходе из работы одной секции шин отключается только часть вводов и отходящих линий).

Отдельные секции шин могут быть соединены между собой или выключателями. При секционировании шин разъединителем последний большей частью разомкнут. При этом обе секции работают раздельно, и при повреждении одной из секций питания лишается только часть потребителей. Кроме того, при раздельной работе трансформаторов снижаются токи короткого замыкания на стороне вторичного напряжения.

В случае повреждения трансформатора его отключают и обе секции соединяют между собой разъедиителем, отключив предварительно для предотвращения перегрузки неответственные потребители.

Допустима также работа с включенным разъединителем для обеспечения равномерного распределения нагрузки между питающими линиями. В этом случае при аварии на одной из секций прекращается питание электроэнергией всех потребителей на время, необходимое для разделения секций. В случае же автоматического отключения одного из источников питания второй источник будет перегружен в течение времени, необходимого для отключения неответственных потребителей.

При наличии межсекционного выключателя (рис. 3) последний может быть также при работе замкнутым или разомкнутым.

Рис. 3. Одиночная секционированная система шин с межсекционным выключателем

При работе с замкнутым выключателем его снабжают максимальной токовой защитой, которая автоматически отключает поврежденную секцию. Однако такое решение не рекомендуется, поскольку оно не дает существенных преимуществ по сравнению со схемами с межсекционными разъединителями.

Применение межсекционного выключателя рекомендуется только в тех случаях, когда он используется для автоматического включения резервного питания от другого рабочего источника и при нормальной работе электроустановки находится в разомкнутом состоянии.

При наличии на подстанции одиночной секционированной системы шин резервирующие друг друга отходящие линии следует присоединять к различным секциям шин.

Для большей надежности питания и большего удобства эксплуатационных переключений на крупных станциях и подстанциях применяют двойную систему шин (рис. 4), которая допускается только при наличии соответствующего обоснования в каждом отдельном случае.

Рис. 4. Двойная система сборных шин

При нормальной работе электроустановки одна система шин является рабочей, а другая - резервной. Обе системы шин могут быть соединены между собой шиносоединительным выключателем, который позволяет осуществить переход с одной системы шин на другую без перерыва в подаче энергии, а также может быть использован в качестве замены любого из выключателей электроустановки. В последнем случае линию, с которой выключатель снят для ремонта, присоединяют к резервной системе шин и соединяют рабочую и резервную системы шин шиносоединительным выключателем.

Loading...Loading...