Конструкции кожухотрубчатых теплообменных аппаратов. Кожухотрубный теплообменник: технические характеристики и принцип работы


Технологические и производственные возможности ЗАО«Опытное машиностроительное производство» , а также накопленный опыт изготовления теплообменного оборудования, позволяют нам производить качественные теплообменные аппараты с широким спектром применения в различных отраслях промышленности.

Возможности производства по изготовлению теплообменных аппаратов:

  • изготовление теплообменников как по чертежам заказчика, так и по различным стандартам, ГОСТам и ТУ, в том числе производство кожухотрубных, кожухотрубчатых теплообменников
  • изготовление теплообменников, как из материала Исполнителя, так и из материала заказчика, с проведением входного контроля материалов
  • проведение предусмотренных технической документацией гидравлических испытаний до 10 МПа (100 кг/см2)
  • неразрушающий контроль сварных соединений (капиллярный, ультразвуковой (УЗК), рентгенографический) проводимый квалифицированными специалистами собственной аттестованной лаборатории
  • наличие грузоподъемного оборудования в сочетании с железнодорожными путями прямо в цехе, позволяющими производить и отгружать теплообменные аппараты и конденсационные установки весом свыше 100 тонн
  • нанесение (по желанию заказчика) защитных антикоррозионных покрытий для защиты от химически агрессивных сред и т.п.
  • выполнение эффективной теплоизоляции теплообменных аппаратов и конденсационных установок (по желанию заказчика)
  • наличие квалифицированного персонала



Наши преимущества:

  • Изделие отвечает техническим требованиям заказчика
  • Использование всего накопленного опыта компании
  • Гибкое взаимодействие с заказчиком
  • Отсутствие трудностей согласования
  • Гарантия качества изготовления
  • Непрерывное совершенствование технологии изготовления и производственных возможностей


Теплообменный аппарат (или теплообменник) - это устройство, в котором осуществляется передача тепла от одной рабочей среды к другой.

В качестве теплоносителей могут быть жидкости, газы, пары. В теплообменниках в зависимости от назначения протекают процессы нагревания или охлаждения, кипения, конденсации и многие другие технологические используемые в металлургической, нефтехимической, нефтеперерабатывающей, газовой, химической и других отраслях промышленности (в т. ч. в энергетике) и коммунальном хозяйстве.

По способу передачи тепла теплообменники подразделяются на смесительные и поверхностные .

Теплообменные аппараты со смешиванием теплоносителей, в таких смесительных теплообменниках теплоносители контактируют непосредственно и смешиваются, при этом теплообмен сопровождается массообменном.

В поверхностных теплообменниках передача тепла происходит через разделительную твердую стенку и между теплоносителями отсутствует непосредственный контакт.

Различают также рекуперативные и регенеративные теплообменные аппараты.

Рекуперативные теплообменники - это теплообменники, в которых холодный и горячий теплоносители движутся в разных каналах, а теплообмен происходит через стенку между ними.

В регенеративных теплообменных аппаратах теплоносители контактируют с твердой стенкой поочередно.

Теплота накапливается в стенке при контакте с горячим теплоносителем и отдается при контакте с холодным/

Смесительные теплообменники

Смесительные (контактные) теплообменники - это теплообменники со смешением сред, предназначенные для осуществления теплообменных и массообменных процессов путем прямого смешения.

В этом заключается их главное отличие от поверхностных теплообменников. Пароводяные струйные аппараты (ПСА) , использующие в своей основе струйный инжектор, являются наиболее распространенными смесительными теплообменниками струйного типа. Конструкция смесительных теплообменных аппаратов проще поверхностных, тепло используется более полно вследствие прямого контакта теплоносителей.

Однако следует заметить, что смесительные теплообменники со смешением сред пригодны, только если технологический процесс допускает такое смешение. В настоящее время тепловые схемы крупных энергоблоков мощностью от 300 до 1200 МВТ для ТЭЦ и АЭС содержат подогреватели конденсата смешивающего типа. Применение таких аппаратов повышает общий КПД турбоустановки. Однако, дополнительное число насосов для перекачки конденсата, требования к защите от заброса воды, сложности размещения подогревателей ограничивают широкое распространение смешивающих подогревателей. Широкое применение данный тип теплообменников находит также в установках утилизации тепла дымовых газов, отработанного пара и т.п.

В промышленности наиболее распространены поверхностные рекуперативные теплообменники:

  • кожухотрубные теплообменники
  • пластинчато-ребристые теплообменники
  • пластинчатые теплообменники
  • ребристые теплообменники
  • объемные и погружные теплообменники
  • витые теплообменники
  • змеевиковые
  • спиральные теплообменники
  • двухтрубные (типа «труба в трубе») теплообменники
Кожухотрубные теплообменники являются наиболее распространенными аппаратами. Они используются в различных технологических процессах, сопровождающихся теплообменом между жидкостями, парами и газами, в том числе при изменении агрегатного состояния. Теплообменные аппараты кожухотрубчатые состоят из трубных пучков, закрепленных в трубных досках с промежуточными перегородками, корпусов (кожухов), крышек, камер, патрубков и опор. Поверхность теплопередачи таких теплообменных кожухотрубчатых аппаратов может достигать нескольких десятков тысяч квадратных метров и состоять из десятков тысяч труб. В конструктивной схеме кожухотрубных теплообменников обеспечивается разобщение внутритрубного и межтрубного пространства, причем каждое из них может быть разделено на несколько ходов рабочей среды (теплоносителя).

По своей конструктивной схеме кожухотрубные подогреватели могут быть:

  • кожухотрубчатые теплообменники с жестким прикреплением концов труб в основных (концевых) трубных досках;
  • кожухотрубчатые теплообменники с промежуточными поперечными перегородками по длине труб (между основными трубными досками);
  • кожухотрубчатые теплообменники с линзовым компенсатором на корпусе;
  • кожухотрубчатые теплообменники с U-образными трубками;
  • кожухотрубчатые теплообменники с плавающей камерой;
  • кожухотрубчатые теплообменники с сильфонным компенсатором на подводящем патрубке;
  • кожухотрубчатые теплообменники с поперечным расположением пучков трубок относительно корпуса.
Достоинства кожухотрубных теплообменников:
  • простота конструкции, технологии изготовления монтажа и ремонта
  • бóльшая тепловая мощность аппаратов по сравнению с пластинчатыми
  • лучше приспособлены для очистки, что заметно облегчает обслуживание и повышает срок их службы (процесс очистки особенно эффективен с применением систем шариковой очистки (сшо))
  • ремонтопригодность и его экономическая целесообразность замены отдельных частей аппаратов
  • как следствие всего перечисленного, меньшая стоимость эксплуатации кожухотрубных теплообменников
В настоящее время стали появляться современные кожухотрубные теплообменники, оснащенные трубками, профилированными таким образом, что рост гидравлического сопротивления ненамного превышает рост теплоотдачи вследствие применения завихрителей потока. Это достигается накаткой на внешней поверхности трубы кольцевых или винтообразных канавок, вследствие образования которых на внутренней поверхности трубы образуются плавно очерченные выступы небольшой высоты, повышающие теплоотдачу в трубках. Эта технология, в дополнение к таким важным показателям как высокая надежность и меньшая стоимость, дает отечественному кожухотрубному оборудованию дополнительные преимущества по сравнению с иностранными пластинчатыми аналогами .

Ребристые теплообменники применяются с целью увеличения теплопередачи через металлические стенки ребер в случаях, когда коэффициенты теплоотдачи по обеим сторонам стенки сильно различаются: например, при передаче тепла от конденсирующегося пара к стенке и от стенки к нагреваемому воздуху. Оребрение поверхности теплообмена вводится со стороны стенки с более низким коэффициентом теплоотдачи. В промышленности используются теплообменные аппараты с различными видами оребрения: шайбовое, пластинчатое, спиральное, проволочное, плавниковое, поперечное и продольное разрезное и т.д. Для оребрения теплообменных аппаратов выбирают тонкостенный, теплопроводный материал, прикрепляемый к стенке сваркой, пайкой, накаткой и т.п.

Пластинчатые теплообменники используются для осуществления теплообмена между газами и другими теплоносителями обычно с низкими значениями коэффициентов теплоотдачи. Конструктивно эти аппараты набирают из штампованных пластин, образующих между собой с одной стороны пластины каналы для одного теплоносителя, а с другой - для другого.

Пластины разделяются прокладками между ними, могут свариваться попарно и составлять необходимую поверхность теплообмена.

Достоинствами пластинчатых теплообменников является их компактность, значительная, удельная к объему поверхность нагрева. Хорошая тепловая эффективность для ряда сочетаний параметров теплоносителей.

К недостаткам пластинчатой конструкции можно отнести невозможность использования при высоких давлениях сред, небольшую тепловую мощность, ограниченный срок службы, трудности эксплуатации, очистки, герметичность и ремонт. Повышенные требования к качеству теплоносителей.

Пластинчато-ребристые теплообменники состоят из системы разделительных пластин, между которыми находятся ребристые поверхности - насадки, присоединенные к пластинам. Пластинчато-ребристые теплообменники,как правило, неразборные и различаются по типу ребер (гладкие, волнистые, прерывистые и др.), а также по направлению рабочих сред (прямоточные, противоточные, перекрестные).

В объемных теплообменниках (кожухотрубчатые теплообменники с U-образными трубками) одна из сред сосредоточена в незамкнутом объеме или в сосуде большого объема, а вторая протекает через трубный пучок прямых, U-образных или спиральных труб. Используются объемные теплообменники с погруженным трубчатым змеевиком или пучком прямых труб.

Витые теплообменники распространены в холодильной и химической промышленности. В таких аппаратах удается разместить большую поверхность теплообмена, чем в прямотрубных аппаратах. Витой теплообменник состоит из центральной трубы (сердечника) на которую навивают по спирали пучки труб. Шаг навивки и расстояние между трубами выбирается из условия равной длины труб. В разных рядах труб разное направление навивки (левое и правое). Дистанционные прокладки устанавливают зазор между трубами. Витые трубные пучки обеспечивают температурную компенсацию и плотность в местах их заделки. Как правило, витые трубные системы выполняются многозаходными.

Змеевиковые теплообменники являются кожухотрубными аппаратами, содержащими змеевиковые трубы, витки которых располагаются по винтовой линии. Змеевиков присоединяемых к коллектору подвода теплоносителя может быть несколько. В пароводяных теплообменниках греющая среда-пар обычно подводится сверху, а охлажденная среда-вода во внутритрубное пространство снизу. Также аппараты широко применяются в системах подогрева конденсата и питательной воды паротурбинных установок, к примеру кожухотрубный теплообменник конденсатор, однако в настоящее время все больше вытесняются «камерными» теплообменниками, содержащими камеры для подвода теплоносителя. Одновременно появляются проектно-конструкторские разработки современных коллекторно-спиральных пароводяных теплообменников для использования в системе подогрева питательной воды турбоустановок ТЭС и АЭС. По мнению разработчиков, применение таких аппаратов может дать весьма значительное снижение металлоемкости всего теплообменного оборудования паротурбинных установок.

Спиральные теплообменники являются одними из простых по конструкции аппаратов и состоят из двух стальных лент, навитых по спирали вокруг центральной разделительной перегородки и образующих два параллельных спиральных канала для рабочих сред. Спиральные каналы прямоугольного сечения ограничены с торцов крышками, в которых имеются патрубки для подвода или отвода среды. Также аппараты обычно применяют при небольших расходах, а также разностях давлений и температур рабочих сред. В последние годы также аппараты вытесняются пластинчатыми теплообменниками.

Двухтрубные теплообменники типа «труба в трубе» давно применяются в промышленности. Также аппараты удобны для нагрева и охлаждения рабочих сред, находящихся под высоким давлением. В этих теплообменниках достигаются хорошие коэффициенты теплопередачи. В изготовлении, при монтаже и эксплуатации они довольно просты, причем при отсутствии необходимости чистки они изготавливаются сварными. Однако, несмотря на простоту конструкции, такие теплообменники довольно громоздки, их удельная металлоемкость по сравнению с другими аппаратами высока. По этой причине область применения таких теплообменников непрерывно сокращается.

Наш производственный опыт показывает, что важным фактором, влияющим на качество изготовления такого сложного оборудования, как теплообменные аппараты, работающие под давлением, является не только наличие технической документации, но и технически грамотно разработанная технология изготовления . Хотим обратить внимание на то, что в отличие от технической документации и производственного оборудования, технология изготовления - это не тиражируемая категория; она привязана к конкретному производству, что дает последнему серьезные преимущества перед конкурентами, не имеющими собственной, проверенной временем технологии. Очевидно, что уже освоенная и хорошо себя зарекомендовавшая производственная технология позволяет в кратчайшие сроки начинать изготовление серийных и малосерийных изделий, а так же быстро осваивать производство опытных единичных образцов продукции.

Главные конденсаторы турбин

Служат для создания вакуума в выхлопном патрубке турбины, сохранения, первичной деаэрации и возврата в цикл конденсата пара, поступающего из турбины. Одновременно конденсатор является частью системы котельной установки станции. Вакуум в конденсаторе создается при помощи конденсации отработавшего в турбине пара, в результате резкого уменьшения удельного объема при превращении пара в конденсат и отсоса неконденсирующихся газов из конденсатора.
В современных мощных паротурбинных установках применяются почти исключительно конденсаторы поверхностного типа , в которых охлаждающая вода прокачивается внутри труб трубных пучков, расположенных в паровом пространстве конденсаторов. Пар, поступающий из турбины, соприкасается с холодной поверхностью труб и конденсируется на них, отдавая теплоту парообразования протекающей внутри труб охлаждающей воде. Конденсат стекает в нижнюю часть конденсатора и откачивается из конденсатосборника конденсатными насосами. Воздух и неконденсирующиеся газы, проникающие через неплотности установки, удаляются из конденсатора эжекторами . Конденсат пара используется для питания котлов и представляет большую ценность, т.к. подвергается высокой степени очистки. Конденсатор не должен допускать переохлаждения конденсата и должен иметь минимальное сопротивление по охлаждающей воде. Теоретически возможный вакуум в конденсаторе зависит только от температуры и располагаемого количества охлаждающей воды. Практический вакуум в эксплуатации зависит от совершенства конструкции конденсатора, вакуумной плотности части турбоустановки, находящейся под вакуумом и чистоты трубок конденсатора.




Конструкция конденсаторов , для турбин различной мощности от 25 до 1200 МВт, определяется расположением в установке и конструкцией фундамента, например, если поверхность теплопередачи конденсатора достигает 8800 м2 и содержит до 84000 трубок, то масса такого конденсатора достигает 2000 т.
Все конденсаторы представляют собой сложную пространственную конструкцию, находящуюся под глубоким вакуумом. Корпуса конденсаторов выполняются из листовой углеродистой стали и имеют внутреннее оребрение, а также усилены продольными и поперечными связями из круглой стали. Охлаждающие трубки концами закрепляются в основных трубных досках и имеют опоры в промежуточных трубных перегородках. Расстановка перегородок в корпусе выполняется по расчету на вибрацию, чтобы исключить опасные формы колебаний трубок. Водяные камеры, как правило, привариваются и имеют открывающие крышки для замены трубок. Для доступа внутрь водяных камер для мелких работ крышки имеют люки. В верхней части конденсатор могут быть встроены один или два регенеративных подогревателя низкого давления . Конденсаторы имеют, как правило, целый ряд приспособлений для приема пара и воды из различного оборудования турбоустановки, необходимых для осуществления цикла.

ЗАО «Опытное машиностроительное производство» предлагает своим клиентам не просто изготовление технологического оборудования, не только услуги собственной производственной базы, но и многолетний опыт, проверенные производственные технологии и готовность квалифицированного персонала решать именно Ваши задачи.

Среди всех разновидностей теплообменников этот вид наиболее распространен. Его применяют при работе с любыми жидкостями, газовыми средами и парообразными, в том числе, если состояние среды меняется в процессе перегона.

История появления и внедрения

Изобрели кожухотрубные (или ) теплообменники в начале прошлого века, дабы активно использовать при работе ТЭС, где большое количество нагретой воды перегонялось при повышенном давлении. В дальнейшем изобретение стали использовать при создании испарителей и нагревающих конструкций. С годами устройство кожухотрубного теплообменника совершенствовалось, конструкция стала менее громоздкой, ее теперь разрабатывают так, чтобы было доступно чистить отдельные элементы. Чаще стали применять подобные системы в нефтеперегонной промышленности и производстве бытовой химии, поскольку продукты этих отраслей несут в себе массу примесей. Их осадок как раз и требует периодической чистки внутренних стенок теплообменника.

Как мы видим на представленной схеме, кожухотрубный теплообменник состоит из пучка трубок, которые расположены в своей камере и закреплены на доске либо решетке. Кожух – собственно, название всей камеры, сваренной из листа не менее 4 мм (или больше, в зависимости от свойств рабочей среды), в которой находятся мелкие трубки и доска. В качестве материала для доски используют обыкновенно листовую сталь. Между собой трубки соединяются патрубками, имеются также вход и выход в камеру, отвод для конденсата, перегородки.

В зависимости от количества труб и их диаметра, колеблется мощность теплообменника. Так, если передающая тепло поверхность составляет около 9 000 кв. м., мощность теплообменника составит 150 МВт, это пример работы паровой турбины.

Устройство кожухотрубного теплообменника подразумевает соединение сварных труб с доской и крышками, которое может быть разным, равно как и изгиб кожуха (в виде буквы U или W). Ниже представлены типы устройств, наиболее часто встречающиеся на практике.

Еще одной особенностью устройства является расстояние между трубами, которое в 2-3 раза должно превышать их сечение. Благодаря чему коэффициент отдачи тепла является небольшим, и это способствует эффективности всего теплообменника.

Исходя из названия, теплообменник – это устройство, создаваемое с целью передать вырабатываемое тепло на нагреваемый предмет. Теплоносителем в данном случае выступает конструкция, описанная выше. Работа кожухотрубного теплообменника заключается в том, что холодная и горячая рабочие среды двигаются по разным кожухам, и теплообмен происходит в пространстве между ними.

Рабочей средой внутри труб является жидкость, в то время как горячий пар проходит в расстоянии между труб, образуя конденсат. Поскольку стенки труб нагреваются больше, чем доска, к которой они прикреплены, эту разность необходимо компенсировать, иначе бы устройство имело значительные потери тепла. Для этого применяются так называемые компенсаторы трех типов: линзы, сальники или сильфоны.

Также, при работе с жидкостью под высоким давлением используют однокамерные теплообменники. Они имеют изгиб U, W-образного типа, необходимое чтобы избежать высоких напряжений в стали, вызываемых тепловым удлинением. Их производство достаточно дорогое, трубы в случае ремонта сложно заменить. Поэтому такие теплообменники пользуются меньшим спросом на рынке.

В зависимости от способа крепления труб к доске или решетке, выделяют:

  • Приваренные трубы;
  • Закрепленные в развальцованных нишах;
  • Соединенные болтами с фланцем;
  • Запаянные;
  • Имеющие сальники в конструкции крепежа.

По типу конструкции кожухотрубные теплообменники бывают (см. рисунок-схему выше):

  • Жесткие (буквы на рис. а, к), нежесткие (г, д, е, з, и) и наполовину жесткие (буквы на рис. б, в и ж);
  • По количеству ходов – одно- или многоходовые;
  • По направлению тока технической жидкости – прямого, поперечного или против направленного тока;
  • По расположению доски горизонтальные, вертикальные и расположенные в наклонной плоскости.

Широкие возможности кожухотрубного теплообменника

  1. Давление в трубках может достигать разных значений, от вакуума до наивысших;
  2. Можно достичь необходимого условия по термическим напряжениям, при этом цена устройства существенно не поменяется;
  3. Размеры системы тоже могут быть различными: от бытового теплообменника в ванную комнату до промышленного площадью 5000 кв. м.;
  4. Нет необходимости предварительно очищать рабочую среду;
  5. Для создания сердцевины используют разные материалы, в зависимости от затрат на производство. Однако все они соответствуют требованиям температуры, давления и устойчивости к коррозии;
  6. Отдельный участок труб можно извлечь для чистки или ремонта.

Есть ли у конструкции недостатки? Не без них: кожухотрубчатый теплообменник весьма громоздкий. Из-за своих габаритов он нередко требует отдельного технического помещения. Ввиду большой металлоемкости стоимость изготовления такого устройства тоже велика.

В сравнении с теплообменниками U, W-трубчатыми и с неподвижными трубками кожухотрубные имеют больше преимуществ и являются эффективнее. Поэтому их чаще покупают, несмотря на высокую стоимость. С другой стороны, самостоятельное изготовление подобной системы вызовет большие трудности, а скорее всего, приведет к значительным потерям тепла в процессе работы.

Особое внимание при эксплуатации теплообменника следует уделять состоянию труб, а также настройке в зависимости от конденсата. Любое вмешательство в систему приводит к изменению площади теплообмена, поэтому ремонт и пуско-наладку должны производить обученные специалисты.

Вас может заинтересовать:

    Промышленный насос необходим практически на любом производстве. В отличие от бытовых насосов они должны выдерживать высокие нагрузки, быть износостойкими и иметь максимальную производительность. Кроме того, насосы подобного типа должны быть экономически выгодными для предприятия, на котором они используются. Для того чтобы купить подходящий промышленный наcос, необходимо изучить его основные характеристики и учитывать...

    Нагрев и охлаждение жидкостей является необходимым этапом в ряде технологических процессах. Для этого используются теплообменники. Принцип действия оборудования основан на передаче тепла от теплоносителя, функции которого выполняет вода, пар, органические и неорганические среды. Выбирая, какой теплообменник лучше для конкретного производственного процесса, нужно базироваться на особенностях конструкции и материала, из...

    Вертикальный отстойник имеет форму цилиндрического резервуара, сделанного из металла (иногда его делают квадратной формы). Форма днища – конусная или пирамидальная. Отстойники можно классифицировать исходя из конструкции впускного устройства – центральное и периферийное. Чаще всего используется вид с центральным впуском. Вода в отстойнике движется в нисходяще-восходящем движении. Принцип работы вертикального...

    Министерство энергетики разработало план развития зеленой электроэнергетики к 2020 году. Доля электроэнергии от альтернативных источников электроэнергии должна достигнуть 4,5% от общего количества энергии, вырабатываемой в стране. Однако по оценкам экспертов такое количество электроэнергии от возобновляемых источников стране просто не нужно. Общее мнение в этой области - развивать выработку электроэнергии за счет...

Кожухотрубные теплообменники относятся к наиболее распространенным аппаратам. Их применяют для теплообмена и термохимических процессов между различными жидкостями, парами и газами – как без изменения, так и с изменением их агрегатного состояния.

Кожухотрубные теплообменники появились в начале ХХ века в связи с потребностями тепловых станций в теплообменниках с большой поверхностью, таких, как конденсаторы и подогреватели воды, работающие при относительно высоком давлении. Кожухотрубные теплообменники применяются в качестве конденсаторов, подогревателей и испарителей. В настоящее время их конструкция в результате специальных разработок с учетом опыта эксплуатации стала намного более совершенной. В те же годы началось широкое промышленное применение в нефтяной промышленности. Для эксплуатации в тяжелых условиях потребовались нагреватели и охладители массы, испарители и конденсаторы для различных фракций сырой нефти и сопутствующих органических жидкостей. Теплообменникам часто приходилось работать с загрязненными жидкостями при высоких температурах и давлениях, и поэтому их необходимо было конструировать так, чтобы обеспечить легкость ремонта и очистки.

С годами кожухотрубные теплообменники стали наиболее широко применяемым типом аппаратов. Это обусловлено прежде всего надежностью конструкции, большим набором вариантов исполнения для различных условий эксплуатации, в частности:

  • однофазные потоки, кипение и конденсация по горячей и холодной сторонам теплообменника с вертикальным или горизонтальным исполнением
  • диапазон давления от вакуума до высоких значений
  • в широких пределах изменяющиеся перепады давления по обеим сторонам вследствие большого разнообразия вариантов
  • удовлетворение требований по термическим напряжениям без существенного повышения стоимости аппарата
  • размеры от малых до предельно больших (5000 м 2)
  • возможность применения различных материалов в соответствии с требованиями к стоимости, коррозии, температурному режиму и давлению
  • использование развитых поверхностей теплообмена как внутри труб, так и снаружи, различных интенсификаторов и т.д.
  • возможность извлечения пучка труб для очистки и ремонта

Однако такое широкое разнообразие условий применения кожухотрубных теплообменников и их конструкций никоим образом не должно исключать поиск других, альтернативных решений, таких, как применение пластинчатых, спиральных или компактных теплообменников в тех случаях, когда их характеристики оказываются приемлемыми и их применение может привести к экономически более выгодным решениям.

Кожухотрубные теплообменники состоят из пучков труб, укрепленных в трубных досках, кожухов, крышек, камер, патрубков и опор. Трубное и межтрубное пространства в этих аппаратах разобщены, причем каждое из них может быть разделено перегородками на несколько ходов. Классическая схема показана на рисунке:

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор паровой турбины мощностью 150 Мвт состоят из 17 тысяч труб с общей поверхностью теплообмена около 9000 м 2 .

Схемы кожухотрубчатых аппаратов наиболее распространенных типов представлены на рисунке:

Кожух (корпус) кожухотрубчатого теплообменника представляет собой трубу, сваренную из одного или нескольких стальных листов. Кожухи различаются главным образом способом соединения с трубной доской и крышками. Толщина стенки кожуха определяется давлением рабочей среды и диаметром кожуха, но принимается не менее 4 мм. К цилиндрическим кромкам кожуха приваривают фланцы для соединения с крышками или днищами. На наружной поверхности кожуха прикрепляют опоры аппарата.

Трубчатка кожухотрубчатых теплообменников выполняется из прямых или изогнутых (U-образных или W-образных) труб диаметром от 12 до 57 мм. Предпочтительны стальные бесшовные трубы.

В проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения внутри труб. Поэтому при равных расходах теплоносителей с одинаковым фазовым состоянием коэффициенты теплоотдачи на поверхности межтрубного пространства невысоки, что снижает общий коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве кожухотрубчатого теплообменника способствует увеличению скорости теплоносителя и повышению эффективности теплообмена.

Трубные доски (решетки) служат для закрепления в них пучка труб при помощи развальцовки, разбортовки, заварки, запайки или сальниковых креплений. Трубные доски приваривают к кожуху (рис. а, в), зажимают болтами между фланцами кожуха и крышки (рис. б, г) или соединяют болтами только с фланцем свободной камеры (рис. д, е). материалом досок служит обычно листовая сталь толщиной не менее 20 мм.

Кожухотрубчатые теплообменники могут быть жесткой (рис. а, к), нежесткой (рис. г, д, е, з, и) и полужесткой (рис. б, в, ж) конструкции, одноходовые и многоходовые, прямоточные, противоточные и поперечноточные, горизонтальные, наклонные и вертикальные.

На рисунке а) изображен одноходовой теплообменник с прямыми трубками жесткой конструкции. Кожух и трубки связаны трубными решетками и поэтому нет возможности компенсации тепловых удлинений. Такие аппараты просты по устройству, но могут применяться только при сравнительно небольших разностях температур между корпусом и пучком труб (до 50 о С). Они имеют низкие коэффициенты теплопередачи вследствие незначительной скорости теплоносителя в межтрубном пространстве.

В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения трубок. Поэтому при одинаковых расходах теплоносителей, имеющих одинаковое агрегатное состояние, коэффициенты теплоотдачи на поверхности межтрубного пространства невысокие, что снижает коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве способствует увеличению скорости теплоносителя и повышению коэффициента теплопередачи. На рисунке 1,б изображен теплообменник с поперечными перегородками в межтрубном пространстве и полужесткой мембранной компенсацией тепловых удлинений вследствие некоторой свободы перемещения верхней трубной доски.

В парожидкостных теплообменниках пар проходит обычно в межтрубном пространстве, а жидкость – по трубам. Разность температур стенки корпуса и труб обычно значительна. Для компенсации разности тепловых удлинений между кожухом и трубами устанавливают линзовые (рис. в), сальниковые (рис. з, и) или сильфонные (рис. ж) компенсаторы.

Для устранения напряжений в металле, обусловленных тепловыми удлинениями, изготавливают также однокамерные теплообменники с гнутыми U- и W-образными трубами. Они целесообразны при высоких давлениях теплоносителей, так как изготовление водяных камер и крепление труб в трубных досках в аппаратах высокого давления – операции сложные и дорогие. Однако аппараты с гнутыми трубами не могут получить широкого распространения из-за трудности изготовления труб с разными радиусами гиба, сложности замены труб и неудобства чистки гнутых труб.

Компенсационные устройства сложны в изготовлении (мембранные, сильфонные, с гнутыми трубами) или недостаточно надежны в эксплуатации (линзовые, сальниковые). Более совершенна конструкция теплообменника с жестким креплением одной трубной доски и свободным перемещением второй доски вместе с внутренней крышкой трубной системы (рис. е). некоторое удорожание аппарата из-за увеличения диаметра корпуса и изготовления дополнительного днища оправдывается простотой и надежностью в эксплуатации. Эти аппараты получили название теплообменников «с плавающей головкой». Теплообменники с поперечным током (рис. к) отличаются повышенным коэффициентом теплоотдачи на наружной поверхности вследствие того, что теплоноситель движется поперек пучка труб. При перекрестном токе снижается разность температур между теплоносителями, однако при достаточном числе трубных секций различие в сравнении с противотоком невелико. В некоторых конструкциях таких теплообменников при протекании газа в межтрубном пространстве и жидкости в трубах для повышения коэффициента теплоотдачи применяют трубы с поперечными ребрами.

Кожухотрубные теплообменники относятся к поверхностным теплообменным аппаратам рекуперативного типа. Широкое распространение этих аппаратов обусловлено прежде всего надежностью конструкции и большим набором вариантов исполнения для различных условий эксплуатации:

    Однофазные потоки, кипение и конденсация;

    Вертикальное и горизонтальное исполнение;

    Широкий диапазон давлений теплоносителей, от вакуума до 8,0 МПа;

    Площади поверхности теплообмена от малых (1 м 2) до предельно больших (1000 м 2 и более);

    Возможность применения различных материалов в соответствии с требованиями к стоимости аппаратов, агрессивностью, температурными режимами и давлением теплоносителей;

    Использование различных профилей поверхности теплообмена как внутри труб, так и снаружи и различных турбулизаторов;

    Возможность извлечения пучка труб для очистки и ремонта.

Различают следующие типы кожухотрубных теплообменных аппаратов:

    Теплообменные аппараты с неподвижными трубными решетками (жесткотрубные ТА);

    Теплообменные аппараты с неподвижными трубными решетками и с линзовым компенсатором на кожухе;

    Теплообменные аппараты с плавающей головкой;

    Теплообменные аппараты с U– образными трубами.

Кожухотрубные теплообменные аппараты с неподвижными трубными решетками отличаются простотой конструкции и, следовательно, меньшей стоимостью (рис. 1).

Рис. 1.Кожухотрубчатый теплообменник с неподвижными трубными решетками:

1 -распределительная камера; 2 -кожух; 3 -теплообменная труба; 4 -поперечная перегородка; 5 -трубная решетка; 6 - задняя крышка кожуха; 7 -опора; 8- дистанционная трубка; 9-штуцеры; 10-перегородка в распределительной камере; 11 - отбойник

Кожухотрубный теплообменный аппарат представляет из себя пучок теплообменных труб, находящихся в цилиндрическом корпусе (кожухе). Один из теплоносителей движется внутри теплообменных труб, а другой омывает наружную поверхность труб. Концы труб закрепляются с помощью вальцовки, сварки или пайки в трубных решетках. В кожух теплообменного аппарата с помощью дистанционных трубок устанавливаются перегородки. Перегородки поддерживают трубы от провисания и организуют поток теплоносителя в межтрубном пространстве, интенсифицируя теплообмен. К кожуху теплообменного аппарата привариваются штуцеры для входа и выхода теплоносителя из межтрубного пространства. На входе теплоносителя в межтрубное пространство в ряде случаев устанавливают отбойники, необходимые для уменьшения вибрации пучка труб, равномерного распределения потока теплоносителя в межтрубном пространстве и снижения эррозии ближайших к входному штуцеру труб. К кожуху теплообменного аппарата с помощью фланцевого соединения крепятся распределительная камера и задняя крышка со штуцерами для входа и выхода продукта из трубного пространства.

В зависимости от расположения теплообменных труб различают теплообменные аппараты горизонтального и вертикального типа.

В зависимости от числа перегородок в распределительной камере и задней крышке кожухотрубчатые теплообменные аппараты делятся на одноходовые, двухходовые и многоходовые в трубном пространстве.

В зависимости от числа продольных перегородок, установленных в межтрубном пространстве, кожухотрубные теплообменники делятся на одно – и многоходовые в межтрубном пространстве.

Теплообменники cнеподвижными трубными решетками применяются, если максимальная разность температур теплоносителей не превышает 80 0 С,и при сравнительно небольшой длине аппарата. Эти ограничения объясняются возникающими в кожухе и в теплообменных трубах температурными напряжениями, способными нарушить герметичность конструкции аппарата.

Для частичной компенсации температурных напряжений в кожухе и в теплообменных трубах используются специальные гибкие элементы (расширители, компенсаторы), установленные на кожухе аппарата. Такие теплообменники называются теплообменными аппаратами с температурным компенсатором на кожухе (рис. 2).

Рис. 2.Вертикальный кожухотрубчатый теплообменник с неподвижными трубными решетками и температурным компенсатором на кожухе:

1-распределительная камера; 2 - трубные решетки; 3 - компенсатор; 4 - кожух; 5 - опора; 6 - теплообменная труба; 7 -поперечная перегородка; 8 - задняя крышка кожуха; 9 - дистанционная трубка; 10 - штуцеры

В аппаратах подобного типа используют одно- и многоэлементные линзовые компенсаторы.

Кожухотрубчатые теплообменные аппараты с плавающей головкой (с подвижной трубной решеткой) являются наиболее распространенным типом кожухотрубных теплообменников (рис. 3). Подвижная трубная решетка позволяет трубному пучку свободно перемещаться независимо от корпуса, что значительно снижает температурные напряжения как в кожухе, так и в теплообменных трубах.

Рис. 3.Кожухотрубчатый теплообменник с плавающей головкой:

1 -крышка распределительной камеры; 2 -распределительная камера; 3 -неподвижная трубная решетка; 4 -кожух; 5 -теплообменная труба; 6 - поперечная перегородка; 7 - подвижная трубная решетка; 8 -задняя крышка кожуха; 9 -крышка плавающей головки; 10 - опора; 11 -катковая опора трубного пучка

Теплообменные аппараты данного типа выполняюся с двумя или с четырьмя ходами по трубному пространству.

Аппараты с плавающей головкой чаще всего выполняются одноходовыми по межтрубному пространству. В аппаратах с двумя ходами по межтрубному пространству устанавливается продольная перегородка.

Кожухотрубчатые теплообменники с U-образнымитрубами (рис. 4)имеют одну трубную решетку, в которую завальцованы оба концаU-образныхтеплообменных труб. Отсутствие других жестких связей теплообменныхU-образныхтруб с кожухом обеспечивает свободное удлинение труб при изменении их температуры. Кроме того, преимущество теплообменников с U-образнымитрубами заключается вотсутствии разъемного соединения внутри кожуха (в отличии от ТА с плавающей головкой), что позволяет успешно применять их при повышенных давлениях теплоносителей, движущихся в трубном пространстве. Недостатком таких аппаратов является трудность чистки внутренней и наружной поверхности труб, вследствие чего они используются преимущественно для чистых продуктов.

Рис. 4. Кожухотрубчатый теплообменник с U-образнымитеплообменными трубами:

1 -распределительная камера; 2 -трубная решетка; 3 -кожух; 4 -теплообменная труба; 5 -поперечная перегородка; 6 -крышка кожуха; 7 -опора; 8 -катковая опора трубного пучка

Эффективность кожухотрубчатых теплообменных аппаратов повышается с увеличением скорости движения потоков теплоносителей и степени их турбулизации. Для увеличения скорости движения потоков в межтрубном пространстве и их турбулизации, повышения качества омывания поверхности теплообмена в межтрубное пространство кожухотрубчатых теплообменных аппаратов устанавливаются специальные поперечные перегородки. Они также выполняют роль опор трубчатого пучка, фиксируя трубы в заданном положении, и уменьшают вибрацию труб.

На рис. 5 показаны поперечные перегородки различных типов. Наибольшее распространение получили сегментные перегородки (рис. 5а).

Рис. 5. Поперечные перегородки кожухотрубных аппаратов:

а - с сегментным вырезом; б - с секторным вырезом; в - перегородки «диск-кольцо»; г - с щелевым вырезом; д - «сплошные»

Поперечные перегородки с секторным вырезом (рис. 5б) оснащены дополнительной продольной перегородкой, равной по высоте половине внутреннего диаметра кожуха аппарата. Секторный вырез, по площади равный четверти сечения аппарата, располагают в соседних перегородках в шахматном порядке. При этом теплоноситель в межтрубном пространстве совершает вращательное движение то по часовой стрелке, то против нее.

Аппараты со «сплошными» перегородками (рис. 5д) используются обычно для чистых жидкостей. В этом случае жидкость протекает по кольцевому зазору между теплообменными трубами и отверстиями в перегородках.

Для повышения тепловой мощности теплообменных аппаратов при неизменных длинах труб и габаритах теплообменника используется оребрение наружной поверхности теплообменных труб. Оребренные теплообменные трубы применяются в тех случаях, когда со стороны одного из теплоносителей трудно обеспечить высокий коэффициент теплоотдачи (газообразный теплоноситель, вязкая жидкость, ламинарное течение и т.д.). На рис. 6приведены варианты наружного оребрения теплообменных труб.

Рис. 6.Оребренные трубы:

а -с приварными «корытообразными» ребрами; б-с завальцованными ребрами; в -с винтовыми накатанными ребрами; г-с выдавленными ребрами; д -с приварными шиловидными ребрами

Для интенсификации теплоотдачи в трубном пространстве используются методы воздействия на поток устройствами, которые турбулизируют теплоноситель в теплообменных трубах. Для этой цели применяются различного рода турбулизирующие вставки, варианты исполнения которых представлены на рис. 7.

Рис. 7. Теплообменные трубы с турбулизаторами:

а -шнековые завихрители; б -ленточные завихрители; в -диафрагмовые трубы с вертикальными канавками; г -диафрагмовые трубы с наклонными канавками; д -проволочные турбулизаторы; е -турбулизирующие вставки

В кожухотрубных теплообменных аппаратах теплоноситель, поступая в межтрубное пространство, в силу конструктивных особенностей делится на несколько потоков (рис. 8):

    А – основной поперечный поток;

    B– перетоки в щелях между отверстиями в поперечных перегородках и теплообменными трубами;

    C– перетоки между кромками перегородок и кожухом;

    D– байпасный поток через зазор между пучком труб и кожухом.

Разделение потока теплоносителя, поступающего в межтрубное пространство, на несколько потоков значительно усложняет гидродинамическую картину движения теплоносителя по сравнению с поперечным омыванием пучков труб и оказывает существенное влияние как на конвективный теплообмен, так и на падение давления теплоносителя. Распределение потоков в межтрубном пространстве зависит от конструктивных характеристик теплообменного аппарата, оптимизация которых является главной задачей при создании новых теплообменников.


Рис. 8. Схема потоков теплоносителя в межтрубном пространстве кожухотрубного теплообменника:

A- основной поперечный поток; В - перетоки в щелях между отверстиями в перегородках и трубами;C- перетоки между кромкой перегородки и кожухом;D- байпасный поток через зазор между пучком труб и кожухом

Учет распределения потоков теплоносителя в межтрубном пространстве необходим, так как в противном случае возможны значительные ошибки при определении среднего коэффициента теплоотдачи и падения давления теплоносителяp , которые могут составить от 50 до 150 %.

В зависимости от совершенства конструкции теплообменного аппарата меняется и распределение потоков в межтрубном пространстве. При турбулентном режиме течения основной поток (A) не превышает 40 % от всего потока теплоносителя, а при ламинарном – 25 %.

Проще всего понять, как работает теплообменник кожухотрубного типа, можно, изучив его принципиальную схему:

Рисунок 1. Принцип работы кожухотрубного теплообменника. Однако, данная схема иллюстрирует лишь уже сказанное: два раздельных, не смешивающихся теплообменных потока, проходящих внутри кожуха и сквозь трубный пучок. Куда нагляднее будет, если схему сделать анимированной.

Рисунок 2. Анимация работы кожухотрубчатого теплообменника. Данная иллюстрация демонстрирует не только принцип работы и устройство теплообменного аппарата, но и то, как выглядит теплообменник снаружи и внутри. Он состоит из цилиндрического кожуха с двумя штуцерами, в нём и двух распределительных камер по обе стороны кожуха.

Трубы собраны вместе и удерживаются внутри кожуха посредством двух трубных решёток – цельнометаллических дисков с просверленными в них отверстиями; трубные решётки отделяют распределительные камеры от корпуса теплообменника. Трубы на трубной решётке могут крепиться методами сварки, развальцовки или сочетанием этих двух методов.

Рисунок 3. Трубная решётка с развальцованными трубами пучка. Первый теплоноситель попадает сразу в кожух через впускной штуцер и покидает его через штуцер выпуска. Второй теплоноситель вначале подаётся в распределительную камеру, откуда направляется в трубный пучок. Попадая во вторую распределительную камеру, поток «разворачивается» и вновь проходит сквозь трубы к первой распределительной камере, откуда выходит через собственный выпускной штуцер. При этом, обратный поток направляется через другую часть трубного пучка, чтобы не препятствовать прохождению «прямого» потока.

Технические нюансы

1. Следует подчеркнуть, что на схемах 1 и 2 представлена работа двухходового теплообменника (теплоноситель проходит по пучку труб в два хода – прямым и обратным потоком). Таким образом, достигается улучшенная теплоотдача при той же длине труб и корпуса обменника; правда, при этом увеличивается его диаметр за счёт увеличения количества труб в трубном пучке. Есть более простые модели, у которых теплоноситель проходит сквозь трубный пучок лишь в одном направлении:

Рисунок 4. Принципиальная схема одноходового теплообменника. Кроме одно- и двухходовых теплообменников, существуют также четырёх- шести- и восьмиходовые, которые используются в зависимости от специфики конкретных задач.

2. На анимированной схеме 2 представлена работа теплообменника с установленными внутри кожуха перегородками, направляющими поток теплоносителя по зигзагообразной траектории. Таким образом, обеспечивается перекрёстный ход теплоносителей, при котором «внешний» теплоноситель омывает трубы пучка перпендикулярно их направленности, что также повышает теплоотдачу. Существуют модели с более простой конструкцией, у которых теплоноситель проходит в кожухе параллельно трубам (см. схемы 1 и 4).

3. Поскольку коэффициент теплопередачи зависит не только от траектории потоков рабочих сред, но и от площади их взаимодействия (в данном случае – от совокупной площади всех труб трубного пучка), а также от скоростей теплоносителей, можно увеличить теплоотдачу за счёт применения труб со специальными устройствами – турбулизаторами.


Рисунок 5. Трубы для кожухотрубчатого теплообменника с волнообразной накаткой. Применение таких труб с турбулизаторами в сравнении с традиционными цилиндрическими трубами позволяет увеличить тепловую мощность агрегата на 15 – 25 процентов; кроме того, за счёт возникновения в них вихревых процессов, происходит самоочистка внутренней поверхности труб от минеральных отложений.

Следует заметить, что характеристики теплоотдачи в значительно мере зависит от материала труб, который должен обладать хорошей теплопроводностью, способностью выдерживать высокое давление рабочей среды и быть коррозионно стойким. По совокупности этих требований для пресной воды, пара и масла наилучшим выбором являются современные марки высококачественной нержавеющей стали; для морской или хлорированной воды – латунь, медь, мельхиор и т.д.

Производит стандартные и модернизированные кожухотрубные теплообменники по современным технологиям для новых устанавливаемых линий, а также выпускает агрегаты, предназначенные для замены выработавших свой ресурс теплообменников. и его изготовление производятся по индивидуальным заказам, с учётом всех параметров и требований конкретной технологической ситуации.

Loading...Loading...