Модернизация тепловых пунктов. Модернизация системы отопления дома: суть мероприятий

Экология потребления.Наука и техника: При внедрении энергосберегающих мероприятий, половинчатые меры, несмотря на одномоментное сокращение капитальных затрат, окупаются долго и трудно, а комплексные мероприятия позволяют вернуть деньги и получить прибыль гораздо быстрее

Модернизация отопительных систем многоквартирных жилых зданий и объектов социальной инфраструктуры - на сегодня одна из наиболее актуальных тем для профессионалов коммунальной отрасли. Главный вопрос дня звучит так: «Каковы необходимые и достаточные условия получения экономического результата, адекватного ожиданиям потребителей коммунальных ресурсов и потенциальных инвесторов энергосервиса?» Практика доказывает: половинчатые меры, несмотря на одномоментное сокращение капитальных затрат, окупаются долго и трудно, а комплексные мероприятия позволяют вернуть деньги и получить прибыль гораздо быстрее.

Итак, рассмотрим последовательно комплекс реализуемых сегодня на объектах ЖКХ мероприятий, направленных на сокращение теплопотребления объектов коммунальной сферы (включая МКД) и их результативность.

Энергоэффективные мероприятия и их суть

Средняя экономия

1

Монтаж узла учета тепла

Без учета говорить об экономии и окупаемости бессмысленно.

*

2

Ликвидация теплопотерь

Утепление ограждающих конструкций, подъездов и подвалов, теплоизоляция коммуникаций.

**

3

Модернизация теплового узла

Замена элеваторных узлов на АИТП или АУУ, в зависимости от схемы присоединения объекта к тепловой сети. Настройка контроллера АИТП на пониженный график отопления в ночное время, выходные и праздники (особенно актуально для административных зданий, образовательных учреждений).

15-25%

4

Балансировка системы по стоякам

Установка автоматических балансировочных клапанов с целью выравнивания расхода теплоносителя по разноудаленным от теплового ввода стоякам.

5-10%

5

Установка на всех отопительных приборах автоматических радиаторных терморегуляторов, либо замена отопительных приборов на новые со встроенными терморегуляторами.

10-15%

6

Для зданий с горизонтальной поквартирной разводкой системы отопления - установка теплосчетчика на вводе в квартиру. Для домов с вертикальной разводкой - внедрение альтернативных систем учета, например, INDIV AMR .

ИТОГО:

30-50%

Теперь оценим наиболее распространенные ошибки, которые допускаются на местах в ходе планирования и реализации мер по теплосбережению.

1. Монтаж узла учета тепла

К счастью, необходимость этого шага сегодня уже не вызывает ни у кого сомнений, да и закон не дает иной альтернативы. Поэтому данный этап реализуется всегда.

Однако все еще встречаются ничем не оправданные ожидания экономии в результате простой установки теплосчетчика. Гипотетически эти ожидания могут оправдаться: иногда оказывается, что здание потребляет меньше тепла, чем предусмотрено нормативом, и тогда после установки теплосчетчика размер платежей за отопление снижается. Но это лотерея, делать из этого правило – большая ошибка. Нужно хорошо понимать: счетчик – это всего лишь измерительный инструмент, который сам по себе ничего не экономит.

2. Ликвидация теплопотерь

Производится по необходимости, которая, по идее, должна определяться в ходе энергетического обследования. К сожалению, обследование проводится далеко не всегда, в результате на некоторых объектах либо вообще не производится необходимый капремонт, либо остаются тепловые бреши, способные подчас свести на нет эффект от последующих мероприятий. Цена подобной ошибки высока: примерно в 10-15% случаев вместо экономии получается прямой убыток. Это неудивительно, ведь если в доме с дырявыми стенами установить автоматику, которая безуспешно будет пытаться его протопить, и теплосчетчик, то показания последнего, конечно, будут зашкаливать. И называть в качестве причины такого результата якобы низкую эффективность энергосберегающих мероприятий в корне неверно.

Другая распространенная ошибка - ожидание экономии от утепления здания без модернизации отопительной системы. Если у вас в подвале элеватор, то расход тепла будет всегда одинаков, невзирая на то, держат стены тепло или промерзают насквозь, т.к. расход этот зависит только от коэффициента смешения элеватора, который является величиной постоянной. Да, в здании будет тепло, зачастую (и как правило) - слишком тепло, т.к. возможности снизить расход не будет. У его обитателей останется единственный выход: открывать форточки и выпускать излишки тепла наружу, все равно оплачивая его в полном объеме. Именно те излишки, которые автоматика позволяет отсечь на входе, до теплосчетчика.

В 2011 году завершился масштабный эксперимент: натурные испытания различных энергоэффективных решений, которые проводились в течение нескольких лет компанией «Данфосс», Правительством Москвы и МНИИТЭП на базе трех реальных жилых домов №№ 51, 53 и 59 по улице Обручева в Москве. Начиная с 2008 года во всех трех зданиях в рамках городской программы капитального ремонта была проведена реконструкция, включающая монтаж навесных вентилируемых фасадов и установку пластиковых окон. Таким образом, все они полностью соответствовали современным стандартам по теплоизоляции. При этом в доме № 51 никаких работ по модернизации системы отопления не проводилось. В результате на этом объекте потребление тепла так и не снизилось. Более того, зимой 2010-2011 гг. оно оказалось на 1,9% выше, чем в 2008-2009 гг. При этом в доме № 59, где была проведена комплексная реконструкция системы отопления, теплопотребление сократилось на 44,6%.

3. Модернизация теплового узла

Из сказанного выше следует простой вывод: элеваторные схемы и энергосбережение - вещи несовместимые. Поэтому, если вы хотите получить экономию, а также обеспечить обитателям здания возможность поддерживать в помещениях комфортный микроклимат, то элеваторный тепловой узел необходимо менять на автоматизированный. В случае присоединения объекта к теплосети по независимой схеме - это автоматизированный индивидуальный тепловой пункт (АИТП) с теплообменником. Если присоединение зависимое - то автоматизированный узел управления (АУУ), т.е. схема с насосным подмесом. В принципе, тот же тепловой пункт, но без теплообменника. Обе схемы предусматривают погодозависимое регулирование подачи теплоносителя в систему, а также автоматическое поддержание температурного графика, т.е. регулирование в зависимости от внутреннего потребления тепла. Обе схемы обеспечивают принудительную циркуляцию теплоносителя в системе.

В последние годы многие коммунальщики пытаются пропагандировать идею применения т.н. экономайзеров - регулируемых электронных гидроэлеваторов. Устройство их немногим сложнее, чем у обычных: электронный блок, соединенный с датчиком температуры наружного воздуха, управляет нехитрым электромагнитным приводом, который вдвигает в сопло струйного насоса иглу, тем самым снижая напор горячей сетевой воды. Нужно отдавать себе отчет в том, что регулируемый элеватор имеет все те же недостатки, что и нерегулируемый, потому что на деле это - практически одно и то же устройство. Поэтому:

  • Вы не сможете использовать в системе радиаторные терморегуляторы и балансировочные клапаны, т.к. любой элеватор - устройство маломощное и дополнительное гидравлическое сопротивление ему не по силам;
  • Для нормальной работы гидроэлеватора напор перед ним должен быть не менее 15 м водяного столба (см. «Правила технической эксплуатации тепловых энергоустановок»), тогда как в реальности, в условиях российских теплосетей, такие показатели обеспечиваются далеко не всегда и не на всех участках сети, а порой бывают в три-четыре раза меньше требуемого значения;
  • Если по какой-либо причине теплосеть не выдерживает температурный график, то на объекте возникает либо перетоп, либо недотоп, т.к. расход в системе постоянен, а гидроэлеватор - устройство пассивное. Если же вследствие «зарастания» старых труб отложениями увеличивается гидравлическое сопротивление системы, то в доме становится холодно;
  • Сетевая вода должна не только доставлять в дома тепло, но и подогревать воду для горячего водоснабжения (ГВС), поэтому ее температура никогда не опускается ниже 70°C. Т.е. с определенного момента, независимо от того, какая температура воздуха на улице, отопительные батареи продолжают оставаться горячими. Последствия известны: духота, форточки настежь, «лишнее» тепло идет на обогрев улицы, но деньги за него все равно платить надо. Какая уж тут экономия!

Есть и еще одна «ложка дегтя». Даже восьмикласснику понятно, что при уменьшении площади сопла регулируемого элеватора вследствие введения в него иглы струя на выходе из этого сопла становится менее мощной, а потому уменьшается и сила всасывания воды из обратного трубопровода системы отопления. Т.е. чем больше игла вдвигается в сопло, тем меньше становится расход теплоносителя в системе, другими словами - циркуляция воды в отопительном контуре замедляется. И в какой-то момент этого расхода начинает хватать только на то, чтобы «прокачать» ближайший к элеватору стояк, в остальные же горячая вода не поступает, и они начинают стремительно остывать.

4. Балансировка системы

Почему-то зачастую модернизация отопительной системы завершается на этапе замены теплового узла. Между тем этого явно недостаточно. Гидравлическое сопротивление системы растет по мере удаления от теплового ввода, в результате по одним стоякам идет перегрев, а по другим в то же самое время – недогрев. В МКД это, как правило, угловые квартиры, последние в цепочке. Если регулировать по ним, то в промежуточных будет перетоп и постоянно открытые форточки. То есть получим то, от чего хотели избавиться. Поэтому установка на стояках автоматических балансировочных клапанов - обязательное условие полноценной модернизации отопительной системы.

Нужно заметить, что в последние годы это решение было дополнительно усовершенствовано. Специалисты компании Danfoss разработали термоэлементы QT, благодаря использованию которых автоматические балансировочные клапаны AB-QM начинают регулировать расход теплоносителя по стоякам в зависимости от изменения температуры обратного теплоносителя. Эта технология позволила приблизить однотрубные системы отопления к двухтрубным по показателям энергоэффективности.

В 2009 году, в ходе эксперимента на улице Обручева в Москве, в домах №№ 53 и 59 элеваторные тепловые узлы заменены на автоматизированные узлы управления (АУУ) Danfoss с погодозависимым регулированием (реализованным с использованием универсальных контроллеров ECL Comfort) и смонтированы автоматические радиаторные терморегуляторы на всех отопительных приборах в квартирах. При этом балансировка отопительной системы была проведена только в доме № 59: здесь на каждом из 25 стояков установили автоматический балансировочный клапан AB- QM. В 2010 году балансировка системы в доме № 59 была доведена до логического завершения путем оснащения клапанов AB- QM термоэлементами QT.

В результате по дому № 53 (без балансировки) было зафиксировано снижение потребления тепла на 33,8%, в то время как по дому № 59 (с балансировкой) - на 44,6%, о чем уже говорилось выше. То есть даже в одноподъездном здании балансировка дает вполне ощутимый экономический эффект. Причем зимой 2010-2011 гг., после установки термостатических элементов QT, потребление снизилось по отношению к уровню 2009-2010 гг. почти на 12% (или на 7,5% по отношению к уровню 2008-2009 гг.), что доказывает оправданность применения данной технологии.

5. Оснащение отопительных приборов средствами индивидуального регулирования

Очень часто приходится слышать, что это мера не является обязательной и создает лишь дополнительный комфорт для обитателей здания, не обеспечивая при этом никакой экономии. Во-первых, даже и в этом случае ее стоило бы реализовать, т.к. именно в обеспечении максимального уровня комфортности жилых и иных зданий и заключается основная задача коммунальных служб. Если, конечно, немного отойти от советской модели работы. Во-вторых, именно уровень регулирования потребления тепла непосредственно на отопительных приборах является замыкающим звеном в цепочке энергосбережения. Ведь если какой-либо конечный потребитель снизил свое теплопотребление, оно автоматически должно сократиться по зданию в целом, по району ЦТП и так далее, по цепочке.

К тому же, нужно понимать, что у каждого человека свои представления о комфортной температуре воздуха. И для многих она не превышает 18-21°C. Если в помещении будет теплее, а терморегулятора на отопительном приборе не окажется, то потребитель неизбежно откроет форточку. Т.е. идея энергосбережения снова выхолащивается.

Нужно ли говорить, что никакой вентиль или шаровой кран просто физически не способен выполнять тех функций, которые берет на себя терморегулятор, и не позволяет получить такой же энергосберегающий эффект. Неудивительно, что в последние годы некоторые производители, например, московский завод «Сантехпром», начали выпускать отопительные радиаторы с уже встроенными терморегуляторами.

6. Переход к поквартирному учету тепла(для МКД)

В нашей таблице экономические результаты от применения автоматических радиаторных терморегуляторов и индивидуальных приборов учета тепла объединены в один показатель. Сделано это не напрасно, ведь именно внедрение поквартирного учета тепла в МКД в наибольшей стимулирует жителей к экономии. Если вашему соседу наплевать и он предпочитает держать отопительные приборы постоянно разогретыми до предела, а температуру в квартире регулировать открыванием форточек, то почему вы должны оплачивать за него эту блажь?

Проблема в том, что до недавнего времени реализовать поквартирный учет тепла в большинстве российских МКД, где, как известно, применяется в основном вертикальная разводка отопления, было проблематично: устанавливать классический теплосчетчик накаждом отопительном приборе слишком дорого, а сами они не обладают необходимой точностью для работы в контуре со столь малым перепадом температур. Однако предложенное компанией «Данфосс» решение - система поквартирного учета тепла INDIV AMR с автоматизированным дистанционным беспроводным считыванием показаний, основанная на использовании радиаторных распределителей - этот вопрос полностью снимает.

Суть метода заключается в следующем. На каждом отопительном приборе в квартирах без врезки в систему жестко крепится радиаторный распределитель INDIV-3R со встроенным радиомодулем, измеряющий температуру поверхности отопительного прибора. Вычислить теплоотдачу таким образом нельзя, но, установив датчики на всех отопительных приборах, можно зафиксировать динамику изменения температуры. А поскольку паспортные данные (мощность, КПД) каждого отопительного прибора известны, можно с высокой степенью точности вычислить долю каждого из них в общем объеме потребления. Затем общедомовое потребление делится на 2 части в соответствии с проектными нормами: 35% относится на отопление общих помещений и распределяется между собственниками пропорционально площади их квартир, 65% делится между ними в соответствии с долями, определенными с помощью распределителей INDIV-3R. Распределители автоматически передают показания по радиоканалу на этажные приемники, те - на домовой концентратор, и далее, посредством Ethernet или GSM - на удаленный компьютер диспетчера.

В России тестирование системы INDIV AMR проводилось на целом ряде объектов, в т.ч. - в доме № 59 по улице Обручева в Москве. Результат ее внедрения наглядно представлен на диаграмме. Если не считать 11 квартир, где система индивидуального учета не была установлена и потребление для которых рассчитывалось по стандартной схеме (на диаграмме эти квартиры отчетливо выделяются), то подавляющее большинство собственников в 2010 году значительно снизили свое потребление по сравнению со средним уровнем 2009 года, причем некоторые - на 60-70%!

Кстати, система INDIV AMR сертифицирована в системе ГОСТ Р и внесена в Реестр средств измерений.

Элементарная логика и результаты испытаний говорят об одном и том же - о необходимости реализации комплексных энергосберегающих мер. Любые половинчатые решения дадут и половинчатый результат, т.е. размажут экономический эффект во времени, сделав инвестиции в энегосбережение малоинтересными.

* Потенциал уменьшения платы за потребленные теплоресурсы путем установки теплосчетчика обычно лежит в пределах 5-10% от платежей по договору. Однако следует отметить, что нередки случае, когда установка узла учета приводила к увеличению совокупной стоимости тепловой энергии в виду некорректной работы теплоснабжающей организации, неправильного определения проектных тепловых нагрузок, недостаточной теплоизоляции здания и т.д.

* * Проведение мероприятий по утеплению здания и теплоизоляции коммуникаций само по себе не дает экономию тепловой энергии, а позволяет достичь эффекта лишь в совокупности с автоматизацией теплового пункта и модернизацией внутренней системы отопления здания.опубликовано

Как известно, в городе идет осуществление проекта Висагинского самоуправления по переоборудованию отопительной системы города из открытого типа в закрытый тип. Проект финансируется Программой снятия ИАЭС с эксплуатации. В свое время проект был представлен жителям как возможность сократить расходы на тепло и горячую воду после закрытия атомной электростанции. Информации было не очень много, да и, надо сказать, большинство жителей не очень-то и стремились вникнуть в сущность проекта и довольствовались тем немногим, что представило самоуправление.
На нашем форуме и на доске объявлений стала регулярно появляться информация под красочными заголовками (например, «Бесплатный сыр от Висагинского самоуправления»), в которой речь шла о вышеназванном проекте. Редакция решила разобраться, чего же добивается автор этих сообщений — Василиюс Домниченка. Отбросив излишнюю эмоциональность, мы считаем себя вправе предложить вашему вниманию его точку зрения.
Но сначала об официальной стороне вопроса.
Висагинское самоуправление на своем сайте в частности опубликовало информацию, в которой сообщило жителям, что по проекту общей продолжительностью с 2007 г. по 2011 г, осуществляемому в два этапа, во всех зданиях города Висагинас будет произведена модернизация теплоузлов. А именно, сначала в 1-м микрорайоне, а затем во 2-м и 3-м микрорайонах, а также части строений в деревне Карлу, будут отремонтированы помещения для теплоузлов, демонтированы старые теплоузлы и установлены новые. Стоимость оборудования и работ для одного теплового пункта составит 100 тысяч литов.
Также сообщалось, что новые теплоузлы станут собственностью самоуправления, а их обслуживание будет осуществляться, как говорилось, «в установленном порядке». В качестве основного преимущества для жителей подчеркивалось, что подогрев воды будет осуществляться непосредственно в теплоузле, и это, соответственно, снизит ее стоимость, так как жителям не придется платить за «дорогостоящую химическую подготовку горячей воды», а только за сам подогрев. При этом жители предупреждались, что поставщик тепла будет осуществлять его подачу независимо от того, осуществлена реновация или нет, только «цены и потери тепла для не осуществивших реновацию зданий будут значительно выше».
Итак, теперь обратимся к комментариям по этому поводу нашего читателя.
Первое, на что обратил внимание В. Домниченка, это мало кому бросающийся в глаза факт перехода новых теплоузлов на баланс самоуправления. В настоящее время имеющиеся в каждом доме теплоузлы, в соответствии с законодательством, являются собственностью жильцов. Ничто не помешает, следовательно, новым владельцам установить любую плату за их аренду, обслуживание в установленном ими же порядке или амортизационные отчисления за смонтированное оборудование и выполненные работы. В. Домниченка напоминает, что таким же образом несколько лет назад происходил бесплатный монтаж счетчиков учета воды. Только почему-то потом жители обнаружили в своих счетах новые статьи расходов - плату за продажу горячей и холодной воды.
Следующий момент, который акцентирует В. Домниченка, касается стоимости горячей воды.
В открытой системе, которой большинство жителей пользуются до сих пор, температура подачи горячей воды составляет 69 градусов Цельсия, ее цена с 2010 г. вместе с НДС — 18,86 Лт.
Стоимость горячей воды в «новой» закрытой системе — 15,35 Лт с НДС. На первый взгляд, очевидная экономия.
Однако, как поясняет В. Домниченка, мало кто знает, что температура горячей воды в новой закрытой системе всего 51 градус Цельсия (эта информация не менее «закрыта»). И получается следующая арифметика.
Чтобы в старой системе получить, скажем, куб воды такой же температуры (51° ), нужно взять:
— две трети горячей воды имеющейся температуры, т.е. 69°, и стоимостью 18,86 Лт/куб. Получаем (0, 667 х 18,86 Лт) 12,58 Лт.
— и одну треть холодной воды температурой 15° стоимостью 5,13 Лт/куб, получаем (0,333 м х 5,13 Лт) 1,71 Лт.
При таком расчете стоимость горячей воды в (существующей) открытой системе получается (12,58 Лт + 1,71 Лт) 14,29 Лт/куб.
Тогда, как напомним, объявленная сниженная стоимость в (новой) закрытой системе 15,35 Лт/куб.
Вся эта арифметика — фактическая переплата в более чем один лит за кубометр горячей воды в (новой) закрытой системе плюс, очевидно, неизбежные дополнительные расходы (аренда, обслуживание и амортизация) на новые и уже не принадлежащие нам теплоузлы — наводит на многие размышления.
И прежде всего, если принять точку зрения В. Домниченка, данный проект никому не выгоден. Никому - из жителей.
А вот кому-то он принесет немалую прибыль («Axis Industries» и Ко…).
Елена Плешак
P.S. Публикуя данное мнение на правах отдельной точки зрения, мы надеемся, что появится возможность опубликовать и другие, возможно, противоречащие высказанному мнения. В частности, в ближайшее время редакция планирует получить комментарии от инициаторов и исполнителей проекта.
Продолжение следует…

Здраствуйте, уважаемые читатели! Автоматизация теплового пункта (теплоузла) — это замена устаревшего, зачастую еще советского оборудования на современное, с автоматизированным регулированием давления и расхода.И начинать автоматизацию, или по другому модернизацию системы отопления здания следует именно с теплоузла.Так как, если вы поставите на радиаторы современные терморегуляторы, пусть даже самых лучших заморских фирм, а в теплоузле механический элеватор, то терморегуляторы не будут работать корректно.

И основная причина в том, что «советский» механический элеватор работает при постоянном гидравлическом режиме, а терморегуляторы при переменной гидравлике. В этом случае вероятна гидравлическая разрегулировка, перегрев обратки. Вообщем нет смысла ставить по всему зданию термостаты на радиаторы, если теплоузел оборудован механическим элеватором.

Хотя и регулируемый элеватор не устраняет всех недостатков механического элеватора. Также не имеет смысла ставить балансировочные клапаны по всему зданию по стоякам при элеваторном присоединении, практически по той же причине. Насчет балансировочных клапанов надо еще просчитать, подумать, нужны ли они вообще, в принципе, в здании.

Итак, какие же схемы автоматизации ИТП существуют? Мне на практике приходилось сталкиваться с двумя вариантами: с погодозависимым электронным элеватором с регулируемым соплом, и схема с регулятором потребления теплоэнергии с двухходовым клапаном. Про недостатки механического элеватора я писал в . Регулируемый элеватор позволяет во многом устранить эти недостатки, и прежде всего он позволяет осуществить количественно-качественное регулирование, и устранить сезонный осенне-весенний перегрев.Схема подключения таких элеваторов включает в себя сам элеватор, контроллер, таймер, датчик температуры наружного воздуха, и датчики температур по подаче и обратке.


У меня на нескольких объектах поставлены такие элеваторы, работают неплохо.В чем еще особенность установки таких элеваторов, так это в том, что окупаются они довольно быстро.Чем больше отопительная нагрузка на здание в Гкал, тем быстрее окупится такой элеватор. Экономию тепла за счет снижений температуры по подаче в ночные часы и выходные дни и нормального регулирования расхода в осенне-весенний период они дают хорошую. В обычном режиме работают четко по температурному графику теплоснабжающей организации, перегрев обратки невозможен в принципе.

Приходилось встречаться с настороженным отношением к этим элеваторам, думаю это из за того, что самые первые регулируемые элеваторы, выпущенные в конце 80х, в 90х годах нередко выходили из строя, в частности очень часто ломался блок автоматики.

Ненадежность автоматики вызывала большое количество отказов в работе, однако это уже в прошлом. Современные погодозависимые элеваторы и автоматика к ним работают нормально.

Вторая схема автоматизации ИТП — это схема с насосом на обратке и регулятором потребления теплоэнергии с двухходовым клапаном.

располагается на обратке, с помощью него осуществляется количественно-качественное регулирование систем отопления, учитывая температуру наружного воздуха.Необходимая температура в системе отопления устанавливается электронным регулятором МР -1 ООО «ТЕРМО-К» по температурному графику от энергоснабжающей организации путем воздействия на двухходовой клапан регулятора потребления теплоэнергии. Про схему эту можно сказать, что она тоже довольно быстро окупается, хотя и является более затратной по сравнению со схемой с электронным элеватором. Преимуществом такой схемы является ее способность поддерживать постоянство циркуляции в системе отопления за счет взаимовлияния характеристик насоса и внутренней сети отопления.


При такой схеме решается проблема перетопов в осенний и весенний период. Кроме того, можно оптимизировать режим теплопотребления с учетом температуры на улице, то есть поддерживать температуру в помещениях в зависимости от уличной температуры, и также экономить тепло на ночных снижениях температуры отопления и снижения в выходные и праздничные дни. Также контроллер МР-01 можно запрограммировать на любую tвн, то есть температуру внутри помещений. Экономия теплоэнергии от применения такой схемы очень неплохая. Другое дело, что в немногих пока ИТП она реализована, все таки дело это затратное.

По поводу элеваторной схемы подключения существуют мнения как за, так и против. Я отношусь к сторонникам второй точки зрения, то есть против. Ведь элеватор — это частный случай насосной схемы подключения вообще, и вообще сам автор изобретения планировал, что в будущем элеватор заменит смесительный насос.В целом же вывод такой, только с заменой элеваторов на циркуляционные насосы можно провести полную автоматизацию систем отопления.Все остальные варианты половинчатые.

Большая часть реализуемых схем автоматизации ИТП с насосным подключением — это схемы, пришедшие с западных, европейских стран. Конечно, наши инженеры и проектировщики ничуть не хуже, а даже лучше западных. Но у европейских специалистов огромное преимущество по времени, если они занимаются этими вопросами уже лет шестьдесят, не меньше, то наши специалисты всего последние лет пятнадцать. Я привел только два примера, с которыми приходится сталкиваться на практике. На самом деле таких схем модернизации ИТП множество, они разработаны для всех видов и типов систем отопления.

Совсем недавно я выпустил книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно.

Вот содержание книги:

1. Введение

2. Устройство ИТП, схема без элеватора

3. Устройство ИТП, элеваторная схема

4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.

5. Заключение

Устройство ИТП (тепловых пунктов) зданий

Буду рад комментариям к статье.

Факторы комфорта

Комфортная для человека среда обитания определяется совокупностью следующих факторов:

  • температура воздуха;
  • скорость воздушного потока вблизи людей;
  • влажность воздуха;
  • давление воздуха;
  • температура окружающих предметов и ограждений;
  • содержание твердых и газообразных примесей в воздухе.

Различная комбинация этих параметров и есть качество среды обитания. Имеется целый ряд стандартов, регламентирующих соотношение данных факторов. Наиболее всеобъемлющим является стандарт ASHRAE 62 . Исторически сложилось так, что до середины 90-х гг. прошлого века большинство зданий в России строилось с радиаторной системой отопления и естественной вентиляцией. Неплотные оконные системы способствовали естественной вентиляции. Последнее десятилетие можно охарактеризовать широким внедрением в строительство современных, «плотных» оконных систем, которые практически не пропускают воздух. Кроме того, появилась потребность в существенно более высоком уровне комфорта в течение всего года, что в свою очередь вызвало широкое применение кондиционирования помещений и использование принудительной вентиляции. До сих пор качество среды обитания российские инженеры характеризуют только температурой в помещении и величиной воздухообмена. В связи с этим проблему несоответствия старых советских зданий потребностям рынка пытаются решить полной реконструкцией комплексов отопления и вентиляции в зданиях с применением самых современных систем подготовки воздуха и управления климатом. Оборудование указанными выше системами строящихся зданий высокой категории в настоящее время стало стандартным.


Три составляющих комфорта

Сегодня проектирование климатических систем ведется тремя категориями инженеров по каждому из блоков: отоплению, вентиляции и кондиционированию. Результат такого подхода часто совершенно не удовлетворителен, т.к. все системы работают несогласованно, а зачастую мешают друг другу. Это относится к оборудованию, работа которого не связана в единый комплекс и никак не автоматизирована. Предлагается рассмотреть ситуацию, когда на состояние воздуха в помещении воздействуют три независимые системы — радиаторное отопление, принудительная вентиляция и кондиционирование. Но кондиционирование и отопление не всегда работают попеременно в зависимости от потребностей в обогреве или кондиционировании. Часто требуется позонное управление климатом. Даже в холодные зимние дни комбинация солнечной радиации в помещениях, расположенных на южной стороне дома, и внутренних тепловых выделений может быть достаточной для вывода избытков тепла в некоторых зонах здания. В переходные периоды года это и вовсе обычное явление.

Прямой связи между радиаторным отоплением, управляемым локальными клапанами, и комплексами кондиционирования, управляемые термостатом, нет, и системы часто работают одновременно. При этом огромен непроизводительный расход энергии.


Потоки воздуха

Нагретые до значительных температур радиаторы генерируют довольно мощное конвекционное движение воздуха. Регистры подачи охлажденного воздуха в помещение обычно располагаются на потолке и, по крайней мере, часть потока из них направлена навстречу движению воздуха от радиаторов. Эти потоки имеют большую разность температур, иногда доходящую до 20 °С. Холодный воздух (большей плотности) опускается под поток теплого. Также не следует забывать, что существует еще один поток воздуха в помещении — от системы вентиляции. В результате возникает явление, которое в быту принято называть сквозняком. И хотя средняя температура в помещении в результате взаимодействия трех потоков может быть в пределах заданных значений, люди чувствуют себя дискомфортно.

Во избежание указанных негативных явлений специалисты в области климатотехники рекомендуют обеспечивать одинаковую температуру всех инжектируемых в помещение воздушных потоков. Это достигается тем, что воздух подается из одной установки, которая одновременно выполняет функции отопления, кондиционирования и вентиляции. Базируясь на этой идее, проектируется и модернизируется большая часть современных климатических комплексов на Западе и в России.


Системы комфорта

В настоящее время уже сложился некий круг систем, широко применяемых при создании комфортабельной среды обитания в многоэтажных общественных зданиях. Опытным путем специалисты отобрали наиболее эффективные и экономичные комплексы, характеризующиеся долговечностью и относительной неприхотливостью.


Все типы систем можно разделить на два класса:

  • системы с центральным этажным кондиционером и терминальными воздушными распределительными коробками;
  • терминальные установки.

VAV-системы

Системы с центральным этажным кондиционером и терминальными воздушными распределительными коробками принято также называть одноканальными VAV-системами. Центральный кондиционер в этих комплексах полностью подготавливает воздух — смешивает рециркуляционный со свежим, очищает смесь, нагревает или охлаждает, удаляет излишнюю влагу или, напротив, увлажняет и подает в общий воздуховод. Каждое помещение имеет свою распределительную коробку (VAV-box), которая обеспечивает две функции: поддержание заданной температуры в помещении и гарантированное обеспечение количества свежего воздуха. Обе функции выполняются путем дроссилирования поступающего в помещение кислорода при помощи изменения положения воздушного клапана. Коробка имеет специальный датчик расхода, контроллер ограничивает положение клапана таким образом, чтобы гарантировалось минимальное количество свежего воздуха. Поскольку коробки из общего воздуховода потребляют переменное количество воздуха, центральный кондиционер должен также регулировать количество вырабатываемого воздуха таким образом, чтобы давление в воздуховоде поддерживалось постоянным. Данные системы в США нашли широкое применение в тех случаях, когда во всех обслуживаемых помещениях требуется один режим — отопление либо охлаждение. В условиях климата средней полосы России последнее условие, как правило, не выполняется.

Существуют двухканальные VAV-системы, в которых два кондиционера подготавливают теплый и холодный воздух соответственно, а VAV-коробки смешивают воздух из двух каналов в нужной пропорции для обеспечения нужной температуры. Такие комплексы энергетически чрезвычайно расточительны и в последние годы применяются редко, в основном в больницах.


Терминальные установки

Терминальные установки — это фактически маленькие кондиционеры, которые выполняют те же самые функции, что и центральные, но обслуживают одно или несколько смежных помещений, которые могут требовать один и тот же режим. Наиболее распространенными типами таких установок являются фанкойлы и водовоздушные тепловые насосы.

Системы с фанкойлами могут быть двухтрубные и четырехтрубные. Первые применяются только в тех случаях, когда все здание или, по крайней мере, весь этаж требует одного режима — отопления или охлаждения. Поскольку это условие в условиях средней полосы России выполняется редко, двухтрубные системы у нас не должны применяться. Использование таких комплексов совместно с традиционными радиаторными системами отопления неизбежно приводит к повышенному расходу энергии и рудиментарному качеству среды обитания, что сводит все усилия по модернизации климатической системы здания к нулю.

Четырехтрубные фанкойлы имеют два теплообменника — отопительный и охладительный. Каждая установка может работать независимо в режимах отопления, охлаждения или вентиляции. Хотя четырехтрубные системы несколько дороже двухтрубных, они дешевле комплексов, в которых двухтрубный фанкойл совмещен с радиаторной системой. Кроме того, такие комплексы обеспечивают несравненно более высокое качество среды обитания. Для питания четырехтрубных фанкойлов необходимы источники охлажденной и горячей воды. Горячая вода может вырабатываться теми же методами, которые применяются для радиаторного отопления, т.е. в ЦТП, ИТП или индивидуальной котельной. Охлажденная вода вырабатывается чиллерами. Чиллеры в свою очередь могут быть центральными либо поэтажными. Центральные чиллеры — это машины, требующие больших залов с тщательной вибро- и звукоизоляцией, сложной и дорогостоящей гидравлической обвязки, специального высококвалифицированного обслуживания. В последнее время все большее распространение получают децентрализованные чиллерные системы, в которых небольшие чиллеры помещаются на каждом этаже вблизи фанкойлов, которые они обслуживают. Такие чиллеры строятся на базе герметичных, очень надежных и тихих скрол-компрессоров и питаются от общего кольцевого водяного контура. Как правило, данные установки имеют ревесивный клапан, который позволяет использовать их не только для охлаждения, но и для нагрева воды.


Водовоздушные насосы

В последние годы в России при построении климатических систем в больших офисных и многофункциональных зданиях все чаще применяются тепловые водовоздушные насосы. Они обладают рядом преимуществ, главное из которых — их энергосберегающие возможности . Значительную часть года насосы почти не потребляют энергию извне, а только перекачивают тепло из зон с его излишками в помещения, требующие обогрева. Тепловые насосы несколько проигрывают фанкойл-системам по качеству среды обитания в том случае, если последние имеют аналоговые клапаны, управляемые микропроцессорными контроллерами. Это позволяет обеспечивать высокую точность поддержания температуры. Сами тепловые насосы — это установки прямого расширения и регулируют температуру только методом включения/выключения. Этот метод регулирования предполагает некоторые (обычно небольшие — 0,5-1 °С) колебания температуры во времени.

Следует обратить внимание, что, обсуждая модернизацию систем отопления и кондиционирования, не упоминаются сплит-системы как средство построения климатических систем больших зданий. Объясняется это тем обстоятельством, что практически невозможно связать работу сплит-систем с работой отдельной системы отопления и вентиляции и соответственно построить комфортабельные климатические системы на их основе.


Автоматизация

Здания, в которых сосуществуют независимые системы отопления, кондиционирования и вентиляции, строились не только в советские времена. В последние годы было также возведено значительное количество сооружений, которые не удовлетворяют даже самым элементарным требованиям качества среды обитания. Теоретически полностью переделать климатическую систему в таких зданиях можно, но на практике подобная модернизация нецелесообразна по экономическим и организационным причинам. В таких случаях на помощь приходит автоматика.

Перед системой автоматического регулирования ставится две основные задачи:

  • не допускать одновременную работу системы кондиционирования и отопления в помещениях;
  • обеспечивать инжекцию свежего воздуха в помещение с температурой как можно ближе к температуре основного потока.

В тех случаях, когда отопление обеспечивается радиаторной системой, а охлаждение — фанкойлами, применяется один из двух способов решения данных задач. Во-первых, путем применения позонной системы управления. Эта система управляет всеми автоматическими клапанами как на радиаторах, так и на фанкойле в каждой зоне. Когда возникает потребность в отоплении, автоматика закрывает клапаны на фанкойле и регулирует температуру в помещении, моделируя положение клапанов на радиаторах. При необходимости охлаждения автоматика выключает радиаторы зоны и управляет фанкойлом. Когда температура в зоне находится между отопительной и охладительной установками, автоматика выключает и отопление, и охлаждение. Поскольку система автоматики имеет информацию о режимах работы каждой зоны, она может принять решение о наиболее благоприятной температуре подачи вентиляционного воздуха.

Второй путь — применение пофасадной системы регулирования. При этом здание оснащается датчиком солнечной радиации. Система управления, используя самообучающийся алгоритм, отключает комплексы радиаторного отопления пофасадно, когда вероятность потребности в охлаждении возрастает. Для управления температурой вентиляционного воздуха в этом случае можно использовать температуру внешнего воздуха и степень солнечного нагрева. Вторая система автоматизации существенно дешевле первой, однако она не может полностью исключить вероятность совместной работы систем отопления и охлаждения в некоторых зонах. На практике этим приходится пренебрегать, потери в этом случае минимальны.

Выводы

Таким образом, климатические системы современных многоэтажных зданий целесообразно строить на основе воздушных методов отопления, вентиляции и кондиционирования, сосредоточенных в единой установке. То есть важен именно комплексный подход к проектированию подобных систем. Применение же радиаторных методов отопления вызывает ряд неразрешимых проблем с качеством среды обитания и энергоэффективностью зданий. В конечном итоге имеет смысл полностью отказаться от использования радиаторного отопления.

Практика показывает, что сегодня существует достаточный инструментарий, набор технологий для решения любых задач по модернизации климатических и отопительных систем зданий любой сложности. Однако универсальных подходов не существует, это нетривиальная задача, которая каждый раз требует индивидуального комплексного подхода инженеров. Наиболее оптимальный, относительно недорогой способ эффективного управления климатом в зданиях старой постройки остается внедрение автоматизированной системы, связывающей существующие климатические звенья в единый комплекс. На основе автоматики можно достаточно точно регулировать температуру воздуха и притоки воздуха в помещения. Важно понимать, что системы автоматического регулирования параметров среды обитания в состоянии несколько скомпенсировать недостатки конструкции климатических систем, но не способны полностью их ликвидировать, и в ряде случаев требуется более серьезное вмешательство в существующую климатическую систему.

С. Дейнеко

Индивидуальный тепловой пункт - важнейшая составляющая систем теплоснабжения зданий. От его характеристик во многом зависит регулирование систем отопления и ГВС, а также эффективность использования тепловой энергии. Поэтому тепловым пунктам уделяется большое внимание в ходе термомодернизаций зданий, масштабные проекты которых в ближайшем будущем планируется воплотить в жизнь в различных регионах Украины

Индивидуальный тепловой пункт (ИТП) — комплекс устройств, расположенный в обособленном помещении (как правило, в подвальном помещении), состоящий из элементов, обеспечивающих присоединение системы отопления и горячего водоснабжения к централизованной тепловой сети. По подающему трубопроводу осуществляется подача теплоносителя в здание. С помощью второго обратного трубопровода в котельную попадает уже охлажденный теплоноситель из системы.

Температурный график работы тепловой сети определяет то, в каком режиме тепловой пункт будет работать в дальнейшем и какое оборудование необходимо в нем устанавливать. Различают несколько температурных графиков работы тепловой сети:

  • 150/70°С;
  • 130/70°С;
  • 110/70°С;
  • 95 (90)/70°С.

Если температура теплоносителя не превышает 95°С, то его остается только распределить по всей отопительной системе. В этом случае возможно применять только коллектор с балансировочными клапанами для гидравлической увязки циркуляционных колец. Если же температура теплоносителя превышает 95°С, то такой теплоноситель нельзя напрямую использовать в системе отопления без его температурной регулировки. Именно в этом и заключается важная функция теплового пункта. При этом необходимо, чтобы температура теплоносителя в системе отопления изменялась в зависимости от изменения температуры наружного воздуха.

В тепловых пунктах старого образца (рис. 1, 2) в качестве регулирующего устройства применялся элеваторный узел. Это позволяло существенно снизить стоимость оборудования, однако с помощью такого ТП было невозможно осуществлять точную регулировку температуры теплоносителя, особенно при переходных режимах работы системы. Элеваторный узел обеспечивал только «качественную» регулировку теплоносителя, когда температура в системе отопления изменяется в зависимости от температуры теплоносителя, приходящего от централизованной тепловой сети. Это приводило к тому, что «регулировка» температуры воздуха в помещениях производилась потребителями при помощи открытого окна и с огромными тепловыми затратами, уходящими в никуда.

Рис. 1.
1 - подающий трубопровод; 2 - обратный трубопровод; 3 - задвижки; 4 - водомер; 5 - грязевики; 6 - манометры; 7 - термометры; 8 - элеватор; 9 - нагревательные приборы системы отопления

Поэтому минимальные изначальные капиталовложения выливались в финансовые потери в долгосрочной перспективе. Особенно низкая эффективность работы элеваторных узлов проявилась с ростом цен на тепловую энергию, а также с невозможностью работы централизованной тепловой сети по температурному или гидравлическому графику, на который были рассчитаны установленные ранее элеваторные узлы.


Рис. 2. Элеваторный узел «советской» эпохи

Принцип работы элеватора заключается в том, чтобы смешивать теплоноситель из централизованной тепловой сети и воду из обратного трубопровода системы отопления до температуры, соответствующей нормативной для данной системы. Это происходит за счет принципа эжекции при использовании в конструкции элеватора сопла определенного диаметра (рис. 3). После элеваторного узла смешанный теплоноситель подается в систему отопления здания. Элеватор совмещает одновременно два устройства: циркуляционный насос и смесительное устройство. На эффективность смешения и циркуляции в системе отопления не влияют колебания теплового режима в тепловых сетях. Вся регулировка заключается в правильном подборе диаметра сопла и обеспечения необходимого коэффициента смешения (нормативный коэффициент 2,2). Для работы элеваторного узла нет необходимости подводить электрический ток.

Рис. 3. Принципиальная схема конструкции элеваторного узла

Однако имеются многочисленные недостатки, которые сводят на нет всю простоту и неприхотливость обслуживания данного устройства. На эффективность работы напрямую влияют колебания гидравлического режима в тепловых сетях. Так, для нормального смешения, перепад давлений в подающем и обратном трубопроводах необходимо поддерживать в пределах 0,8 - 2 бар; температура на выходе из элеватора не поддается регулировке и напрямую зависит только от изменения температуры тепловой сети. В этом случае, если температура теплоносителя, поступающего из котельной, не соответствует температурному графику, то и температура на выходе из элеватора будет ниже необходимой, что напрямую повлияет на внутреннюю температуру воздуха в помещениях здания.

Подобные устройства получили широкое применение во многих типах зданий, подключенных к централизованной тепловой сети. Однако в настоящее время они не соответствуют требованиям по энергосбережению, в связи с чем подлежат замене на современные индивидуальные тепловые пункты. Их стоимость значительно выше и для работы обязательно требуется электропитание. Но, в то же время, эти устройства более экономны - позволяют снизить энергопотребление на 30 - 50%, что с учетом роста цен на теплоноситель позволит уменьшить срок окупаемости до 5 - 7 лет, а срок службы ИТП напрямую зависит от качества используемых элементов управления, материалов и уровня подготовки технического персонала при его обслуживании.

Современные ИТП

Энергосбережение достигается, в частности, за счет регулирования температуры теплоносителя с учетом поправки на изменение температуры наружного воздуха. Для этих целей в каждом тепловом пункте применяют комплекс оборудования (рис. 4) для обеспечения необходимой циркуляции в системе отопления (циркуляционные насосы) и регулирования температуры теплоносителя (регулирующие клапаны с электрическими приводами, контроллеры с датчиками температуры).

Рис. 4. Принципиальная схема индивидуального теплового пункта и использованием контроллера , регулирующего клапана и циркуляционного насоса

Большинство тепловых пунктов имеет в своем составе также теплообменник для подключения к внутренней системе горячего водоснабжения (ГВС) с циркуляционным насосом. Набор оборудования зависит от конкретных задач и исходных данных. Именно поэтому, из-за различных возможных вариантов конструкции, а также своей компактности и транспортабельности, современные ИТП получили название модульных (рис. 5).


Рис. 5. Современный модульный индивидуальный тепловой пункт в сборе

Рассмотрим использование ИТП в зависимых и независимых схемах подключения системы отопления к централизованной тепловой сети.

В ИТП с зависимым присоединением системы отопления к внешним тепловым сетям циркуляция теплоносителя в отопительном контуре поддерживается циркуляционным насосом. Управление насосом осуществляется в автоматическом режиме от контроллера или от соответствующего блока управления. Автоматическое поддержание необходимого температурного графика в отопительном контуре также осуществляется электронным регулятором. Контролер воздействует на регулирующий клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»). Между подающим и обратным трубопроводами установлена смесительная перемычка с обратным клапаном, за счет которой осуществляется подмес в подающий трубопровод из обратной линии теплоносителя, с более низкими температурными параметрами (рис. 6).

Рис. 6. Принципиальная схема модульного теплового пункта, подключенного по зависимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами

В данной схеме работа системы отопления зависит от давлений в центральной тепловой сети. Поэтому во многих случаях потребуется установка регуляторов перепада давления, а, в случае необходимости, и регуляторов давления «после себя» или «до себя» на подающем или на обратном трубопроводах.

В независимой системе для присоединения к внешнему источнику тепла используется теплообменник (рис. 7). Циркуляция теплоносителя в системе отопления осуществляется циркуляционным насосом. Управление насосом производится в автоматическом режиме контролером или соответствующим блоком управления. Автоматическое поддержание необходимого температурного графика в нагреваемом контуре также осуществляется электронным регулятором. Контроллер воздействует на регулируемый клапан, расположенный на подающем трубопроводе на стороне внешней тепловой сети («острой воде»).


Рис. 7. Принципиальная схема модульного теплового пункта, подключенного по независимой схеме:
1 - контроллер; 2 - двухходовой регулирующий клапан с электрическим приводом; 3 - датчики температуры теплоносителя; 4 - датчик температуры наружного воздуха; 5 - реле давления для защиты насосов от сухого хода; 6 - фильтры; 7 - задвижки; 8 - термометры; 9 - манометры; 10 - циркуляционные насосы системы отопления; 11 - обратный клапан; 12 - блок управления циркуляционными насосами; 13 - теплообменник системы отопления

Достоинством данной схемы является то, что отопительный контур независим от гидравлических режимов централизованной тепловой сети. Также система отопления не страдает от несоответствия качества входящего теплоносителя, поступающего из центральной тепловой сети (наличия продуктов коррозии, грязи, песка и т.д.), а также перепадов давления в ней. В то же время стоимость капитальных вложений при применении независимой схемы больше - по причине необходимости установки и последующего обслуживания теплообменника.

Как правило, в современных системах применяются разборные пластинчатые теплообменники (рис. 8), которые достаточно просты в обслуживании и ремонтопригодны: при потере герметичности или выходе из строя одной секции, теплообменник возможно разобрать, а секцию заменить. Также, при необходимости, можно повысить мощность путем увеличения количества пластин теплообменника. Кроме того, в независимых системах применяют паяные неразборные теплообменники.

Рис. 8. Теплообменники для независимых систем подключения ИТП

Согласно ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети», в общем случае предписано подсоединение систем отопления по зависимой схеме. Независимая схема предписана для жилых зданий с 12 и более этажами и других потребителей, если это обусловлено гидравлическим режимом работы системы или техническим заданием заказчика.

ГВС от теплового пункта

Наиболее простой и распространенной является схема с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения (рис. 9). Они присоединены к той же тепловой сети, что и системы отопления зданий. Вода, из наружной водопроводной сети подается в подогреватель ГВС. В нем она нагревается сетевой водой, поступающей из подающего трубопровода тепловой сети.

Рис. 9. Схема с зависимым присоединением системы отопления к тепловой сети и одноступенчатым параллельным присоединением теплообменника ГВС

Охлажденная сетевая вода подается в обратный трубопровод тепловой сети. После подогревателя горячего водоснабжения нагретая водопроводная вода подается в систему ГВС. Если приборы в этой системе закрыты (к примеру, в ночное время), то горячая вода по циркуляционному трубопроводу снова подается в подогреватель ГВС.

Эту схему с одноступенчатым параллельным присоединением подогревателей горячего водоснабжения рекомендуется применять, если отношение максимального расхода теплоты на ГВС зданий к максимальному расходу теплоты на отопление зданий менее 0,2 или более 1,0. Схема используется при нормальном температурном графике сетевой воды в тепловых сетях.

Кроме того, применяется двухступенчатая система подогрева воды в системе ГВС. В ней в зимний период холодная водопроводная вода сначала подогревается в теплообменнике первой ступени (с 5 до 30 ˚С) теплоносителем из обратного трубопровода системы отопления, а затем для окончательного догрева воды до необходимой температуры (60 ˚С) используется сетевая вода из подающего трубопровода тепловой сети (рис. 10). Идея состоит в том, чтобы использовать для нагрева бросовую тепловую энергию обратной линии от системы отопления. При этом сокращается расход сетевой воды на подогрев воды в системе ГВС. В летний период нагрев происходит по одноступенчатой схеме.

Рис. 10. Схема теплового пункта с зависимым присоединением системы отопления к тепловой сети и двухступенчатым нагревом воды

Требования к оборудованию

Важнейшей характеристикой современного теплового пункта является наличие приборов учета тепловой энергии, что в обязательном порядке предусмотрено ДБН В.2.5-39:2008 «Инженерное оборудование зданий и сооружений. Внешние сети и сооружения. Тепловые сети».

Согласно разделу 16 указанных норм, в тепловом пункте должно быть размещено оборудование, арматура, устройства контроля, управления и автоматизации, с помощью которых осуществляют:

  • регулирование температуры теплоносителя по погодным условиям ;
  • изменение и контроль параметров теплоносителя;
  • учет тепловых нагрузок, затрат теплоносителя и конденсата;
  • регулирование затрат теплоносителя;
  • защиту локальной системы от аварийного повышения параметров теплоносителя;
  • доочистку теплоносителя;
  • заполнение и подпитку систем отопления;
  • комбинированное теплообеспечение с использованием тепловой энергии от альтернативных источников.

Подсоединение потребителей к теплосети должно осуществляться по схемам с минимальными затратами воды, а также экономией тепловой энергии за счет установки автоматических регуляторов теплового потока и ограничения затрат сетевой воды. Не допускается присоединение системы отопления к тепловой сети через элеватор вместе с автоматическим регулятором теплового потока.

Предписано использовать высокоэффективные теплообменники с высокими теплотехническими и эксплуатационными характеристиками и малыми габаритами. В наивысших точках трубопроводов тепловых пунктов следует устанавливать воздухоотводчики, причем рекомендуется применять автоматические устройства с обратными клапанами. В нижних точках следует устанавливать штуцеры с запорными кранами для спуска воды и конденсата.

На вводе в тепловой пункт на подающем трубопроводе следует устанавливать грязевик, а перед насосами, теплообменниками, регулирующими клапанами и счетчиками воды - сетчатые фильтры. Кроме того, фильтр-грязевик необходимо устанавливать на обратной линии перед регулирующими устройствами и приборами учета. По обе стороны от фильтров следует предусмотреть манометры.

Для защиты каналов ГВС от накипи нормами предписано использовать устройства магнитной и ультразвуковой обработки воды. Принудительная вентиляция, которой необходимо обустраивать ИТП, рассчитывается на кратковременное действие и должна обеспечивать 10-кратный обмен с неорганизованным приливом свежего воздуха через входные двери.

Во избежание превышения уровня шума, ИТП не допускается располагать рядом, под или над помещениями жилых квартир, спален и комнат игр детсадов и т.д. Кроме того, регламентируется, что установленные насосы должны быть с допустимым низким уровнем шума.

Тепловой пункт следует оснащать средствами автоматизации, приборами теплотехнического контроля, учета и регулирования, которые устанавливают на месте или на щите управления.

Автоматизация ИТП должна обеспечивать:

  • регулирование затрат тепловой энергии в системе отопления и ограничение максимального расхода сетевой воды у потребителя;
  • заданную температуру в системе ГВС;
  • поддержание статического давления в системах потребителей теплоты при их независимом присоединении;
  • заданное давление в обратном трубопроводе или необходимый перепад давления воды в подающем и обратном трубопроводах тепловых сетей;
  • защиту систем теплопотребления от повышенного давления и температуры;
  • включение резервного насоса при отключении основного рабочего и др.

Помимо того, современные проекты предусматривают обустройство удаленного доступа к управлению тепловыми пунктами. Это позволяет организовать централизованную систему диспетчеризации и осуществлять контроль за работой систем отопления и ГВС. Поставщиками оборудования для ИТП являются ведущие компании-производители соответствующего теплотехнического оборудования, например: системы автоматики - Honeywell (США), Siemens (Германия), Danfoss (Дания); насосы - Grundfos (Дания), Wilo (Германия); теплообменники - Alfa Laval (Швеция), Gea (Германия) и др.

Стоит также отметить, что современные ИТП включают достаточно сложное оборудование, которое требует периодического технического и сервисного обслуживания, заключающегося, к примеру, в промывке сетчатых фильтров (не реже 4 раз в год), чистке теплообменников (минимум 1 раз в 5 лет) и т.д. При отсутствии надлежащего технического обслуживания оборудование теплового пункта может прийти в негодность или выйти из строя. Примеры тому в Украине, к сожалению, уже есть.

В то же время, существуют подводные камни при проектировании всего оборудования ИТП. Дело в том, что в отечественных условиях температура в подающем трубопроводе централизованной сети часто не соответствует нормируемой, которую указывает теплоснабжающая организация в технических условиях, выдаваемых для проектирования.

При этом разница в официальных и реальных данных может быть довольно существенной (например, в реальности поставляется теплоноситель с температурой не более 100˚С вместо указанных 150˚С, или наблюдается неравномерность температуры теплоносителя со стороны центральной тепловой по времени суток), что соответственно, влияет на выбор оборудования, его последующую эффективность работы и, в итоге, на его стоимость. По этой причине рекомендуется при реконструкции ИТП на этапе проектирования, проводить замеры реальных параметров теплоснабжения на объекте и учитывать их в дальнейшем при расчетах и выборе оборудования. При этом из-за возможного несоответствия параметров, оборудование стоит проектировать с запасом в 5-20 %.

Реализация на практике

Первые современные энергоэффективные модульные ИТП в Украине были установлены в Киеве в период 2001 - 2005 гг. в рамках реализации проекта Всемирного банка «Энергосбережение в административных и общественных зданиях». Всего было смонтировано 1173 ИТП. К настоящему времени по причине не решенных ранее вопросов периодического квалифицированного технического обслуживания порядка 200 из них пришли в негодность или требуют ремонта.

Видео. Реализованный проект с применением индивидуального теплового пункта в многоквартирном жилом доме, экономия до 30% теплоэнергии

Модернизация установленных ранее тепловых пунктов с организацией удаленного доступа к ним является одним из пунктов программы «Термосанация в бюджетных учреждениях г. Киева» с привлечением кредитных средств Северной экологической финансовой корпорации (NEFCO) и грантов «Фонда Восточного партнерства по энергоэффективности и окружающей среде» (E5P).

Помимо того, в минувшем году Всемирный банк объявил о старте масштабного шестилетнего проекта, направленного на повышение энергоэффективности теплоснабжения в 10 городах Украины. Бюджет проекта составляет 382 млн. долларов США. Направлены они будут, в частности, и на установку модульных ИТП. Планируется также ремонт котельных, замена трубопроводов и установка счетчиков тепловой энергии. Намечено, что проект поможет в снижении издержек, повышении надежности обслуживания и улучшении общего качества теплоты, поступающей свыше 3 млн. украинцам.

Модернизация теплового пункта - одно из условий повышения энергоэффективности здания в целом. В настоящее время кредитованием внедрения данных проектов занимается ряд украинских банков, в том числе и в рамках государственных программ. Подробнее об этом можно прочитать в предыдущем номере нашего журнала в статье «Термомодернизация: что именно и за какие средства ».

Больше важных статей и новостей в Telegram-канале AW-Therm . Подписывайтесь!

Просмотрено: 183 227
Loading...Loading...