Маячок автомобильный светодиодный 12 24в своими руками. Советы по установке проблексовых маячков и световых балок. Крепление. Источники питания. Свет

Бывают ситуации, когда нужна схема маячка, который создавал бы вспышки действительно яркие и заметные, например, на служебный автомобиль или походный фонарь.

Выше изображена схема такого маячка, который вспыхивает, создавая эффект стробоскопа.

Питается схема от источника питания не ниже 10 вольт. Для уменьшения рабочего напряжения можно поменять транзисторы VT1 и VT2 на транзисторы с наиболее низким по напряжению КЭ переходом. А также подогнав номиналы резисторов R1 и R2.

Резисторами R3 и R4 регулируют вспышки, если увеличить номиналы резисторов до 100 Ом, светодиоды будут загораться плавно. Благодаря резисторам номиналом 1 Ом, светодиоды вспыхивают быстро, в связи с чем и создается эффект стробоскопа.

Конденсаторами C1 и C2 регулируют частоту вспышек светодиодов VD1 и VD2. Уменьшая емкость конденсаторов можно увеличить скорость вспышек.
Светодиоды желательно ставить более яркие с большей силой свечения.
Как видно по схеме устройство состоит из двух аналогичных блоков, первый блок состоит из резисторов R1 и R3, конденсатора C1, транзистора VT1 и светодиода VD1. Остальные детали относятся ко второму блоку. Составляя дополнительные блоки можно увеличить число маячков.

Обратите внимание на базы транзисторов VT1 и VT2, они не подключены, это не ошибка, да действительно базы транзисторов в устройстве не подключаются!

Устройство было смонтировано на печатной плате, плата была вставлена в корпус от реле, далее было протестировано и установлено на служебный автомобиль «Нива» на место штатных габаритов, в каждую фару было установлено по три светодиода. Устройство работает успешно уже второй год, компоненты не греются, сбоев в работе не зафиксировано.

Устройство разработано больше года назад, по просьбе товарища, на основе данных взятых в Интернете из открытых источников.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

КТ315Б

2 С любым буквенным индексом В блокнот
С1, С2 Электролитический конденсатор 1000 мкФ 16 В 2 В блокнот
R1, R2 Резистор

1 кОм

2 В блокнот
R3, R4 Резистор

1 Ом

2 В блокнот
VD1, VD2 Светодиод 2

Хорошая автомобильная сигнализация, такая как «Convoy», «Sheriff», «Alligator» и др. стоит не мало денег. Но, сделав простое устройство (см. схемы), на базе мультивибратора, можно легко сымитировать её и этим самым приблизительно на 40-50 % , а то и больше, уменьшить вероятность угона автомобиля. Ведь автомобильным ворам проще и безопаснее «вскрыть» машину без признаков сигнализации, а таких, к сожалению, хватает.

Обычно, на автомобилях с активированной (включённой) сигнализацией, мигает красный, синий или зелёный светодиод в салоне. Устанавливают его обычно где-то на передней стойке салона. Сделать такое устройство можно по следующей схеме.

Детали в имитаторе применяются не дефицитные, транзисторы можно использовать КТ315, или КТ815, КТ972, электролитические конденсаторы 50-100 мкФ 16 В, светодиод АЛ307 и несколько резисторов на 10 и 0,5 кОм. Такие радиодетали можно без проблем найти в старых телевизорах, принтерах и других устройствах.

Изменением ёмкости конденсаторов можно менять паузу или время свечения светодиода (один отвечает за паузу, второй за свечение). Светодиоды в этой схеме загораются плавно и также плавно тухнут. Время свечения и паузу, на мой взгляд, лучше оставить симметричную, т.е. поставить оба конденсаторы на 100 мкФ.

Схема начинает работать при питании с 3 вольт, но лучше её запитать от 9-12 В, тогда свечение светодиодов будет максимальное и имитатор будет заметнее.

Запитать можно от бортового аккумулятора или «Кроны» 9 В, в худшем случае 2 батареек на 1, 5 В. Но! Запитывать надо скрытно, т.е. проводку и плату скрыть и вывести наружу только светодиод, а не от прикуривателя, как некоторые. Иначе, вор сразу поймёт, что это муляж.

Есть и другие варианты моргалок, например, на базе несимметричного мультивибратора. Схема построена на транзисторах разной проводимости. В отличие от предыдущего варианта эта схема запитывается от одной или 2 пальчиковых батареек, т. е. 1,5 -3 В и хватает её примерно на полгода. Но, при желании устройство можно питать через делитель напряжения и от бортового аккумулятора 12 В.

Работает она несколько иначе, чем предыдущая схема, светодиод загорается вспышкой и быстро тухнет. Как для меня, первый вариант более по душе.

Если устройство собрано согласно схеме, без ошибок - работает сразу же и не требует никакой наладки, разве что при желании подстроить можно частоту мигания. Транзисторы в данной схеме используются кремниевые, КТ315 и КТ361 с любыми буквенными значениями. Регулировку (частоту генератора) можно менять в достаточно больших пределах при помощи R1 и С1.

Но, при сборке надо учесть что конденсатор С1 в этой схеме должен быть обязательно типа КМ, т. е. не электролитический, не полярный. Светодиод можно поставить любого цвета, но обычно это красный или синий.

Сама же схема экономичная и продолжает работать при падения напряжения до 1 вольта. Такое имитирующее устройство, из-за высокой экономичности, часто ещё используют радиолюбители и не только, для "охраны" квартир, дачных домиков, гаражей и т. п. Для этой цели есть и более надёжные варианты, например GSM сигнализация, более подробно .

Есть и другие схемы имитаторов, все они работают примерно одинаково, но те, что приведены здесь, проверены и работают на 100%.

Приведённые выше схемы имитаторов сигнализации - это так называемая «пассивная» защита от угона или кражи. Эти схемы хоть и простые, но стоит того чтобы повозиться и сделать устройство, особенно если автомобиль у вас новый и привлекательный, а тратится на реальную сигнализацию не хочется, или нет времени или желания.

Различный специальный автотранспорт оснащается проблесковыми маячками, которые обычно представляют собой лампу, вокруг которой при помощи электродвигателя вращается светоотражающее зеркало. В любительских условиях эффект вращения света в маячке можно получить другим способом, если в корпусе маячка расположить четыре лампы, каждая из которых имеет собственный неподвижный отражатель. Лампы расположить диаметрально противоположно в плоскости окружности основания маячка, так чтобы они были направлены в четыре разные стороны. А затем, при помощи электронного устройства переключать эти лампы по кругу.

Принципиальная схема такого устройства показана на рисунке. В маячке используются мощные автомобильные лампы на 40-60 ВТ каждая. Попытка переключать эти лампы при помощи транзисторных ключей на КТ829 положительных результатов не дала - транзисторы быстро выходили из строя Поэтому в качестве коммутационных элементов были использованы три автомобильных электромагнитных реле с переключающими контактами.

Реле включаются транзисторными ключами VT1-VT3, на которые поступают уровни с выхода двоичного счетчика D2 и дешифратора на элементах D1.3 и D1.4. На счетчик поступают импульсы от мультивибратора на D1.1 и D1.2.

Предположим, в исходном состоянии счетчик находится в нулевом положении. При этом на его выходах нули и все три реле обесточены. В этом случае напряжение 12В поступает через контакты К1 и К2 на лампу Н1. С поступлением первого импульса счетчик переходит в положение П и на его выводе 3 появляется единица. При этом срабатывает реле Р1 и напряжение 12В через К1 и К3 поступает на лампу Н2.

Затем на счетчик поступает второй импульс. Единица появляется на выводе 4, а на выводе 3 - ноль. Реле Р1 выключается, и срабатывает реле Р2. Напряжение через К1 и К2 поступает на лампу НЗ. С поступлением третьего импульса единицы устанавливаются на обеих выходах счетчика и оба реле срабатывают. При этом единицы поступают на оба входа элемента D1.3, и на выходе D1.4 появляется единица. Таким образом, срабатывают сразу все три реле. При этом напряжение через контакты К1 и КЗ поступает на лампу Н4.

Затем весь процесс повторяется. Установить скорость вращения света можно подбором номинала R1. Если вместо него поставить последовательно включенные постоянный резистор на 100-200 кОм и переменный на 500-1000 кОм можно будет регулировать скорость в процессе эксплуатации.

Электромагнитные реле типа 112.3747-10Е от автомобиля ВАЗ-2108 (они имеют пять контактов). Вместо счетчика К561ИЕ10 можно использовать любой двоичный счетчик КМОП, или собрать счетчик на триггерах микросхемы К561ТМ2.

Проблесковые маячки применяются в электронных охранных домовых системах и на автомобилях как устройства индикации, сигнализации и предупреждения. Причём их внешний вид и «начинка» часто совсем не отличаются от проблесковых маячков (спецсигналов) аварийных и оперативных служб.

В продаже имеются классические маячки, но их внутренняя «начинка» поражает своим анахронизмом: изготовлены они на основе мощных ламп с вращающимся патроном (классика жанра) или ламп типа ИФК-120, ИФКМ-120 со стробоскопическим устройством, обеспечивающим вспышки через равные промежутки времени (импульсные маячки). А между тем на дворе XXI век, когда наблюдается триумфальное шествие очень ярких (мощных по световому потоку) светодиодов.

Одним из основополагающих моментов в пользу замены ламп накаливания и галогенных ламп светодиодами, в частности в проблесковых маячках, являются больший ресурс (срок безотказной работы) и меньшая стоимость последних.

Кристалл светодиода практически «неубиваем», поэтому ресурс прибора определяет в основном долговечность оптического элемента. Подавляющее большинство производителей применяют для его изготовления различные комбинации эпоксидных смол, разумеется, с различной степенью очистки. В частности, из-за этого светодиоды имеют ограниченный ресурс, по истечении которого они мутнеют.

Разные производители (не будем их бесплатно рекламировать) заявляют ресурс своих светодиодов от 20 до 100 тысяч (!) часов. В последнюю цифру мне слабо верится, потому что светодиод должен работать непрерывно 12 лет. За это время пожелтеет даже бумага, на которой отпечатана статья.

Однако, в любом случае, по сравнению с ресурсом традиционных ламп накаливания (менее 1000 часов) и газоразрядных ламп (до 5000 часов), светодиоды на несколько порядков долговечнее. Совершенно очевидно, что залогом большого ресурса является обеспечение благоприятного теплового режима и стабильного питания светодиодов.

Преобладание светодиодов с мощным световым потоком 20 - 100 лм (люменов) в новейших электронных устройствах промышленного изготовления, в которых они работают вместо ламп накаливания, даёт основание и радиолюбителям применять такие светодиоды в своих конструкциях. Таким образом, я подвожу читателя к мысли о возможности замены в аварийных и специальных маячках различных ламп мощными светодиодами. При этом ток потребления устройством от источника питания уменьшится и будет зависеть в основном от применённого светодиода. Для использования в автомобиле (в качестве спецсигнала, аварийного светового указателя и даже «знака аварийной остановки» на дорогах) ток потребления непринципиален, поскольку аккумуляторная батарея (АКБ) автомобиля имеет достаточно большую энергоёмкость (55 и более Ач и более). Если же маячок питается от автономного источника, то ток потребления установленного внутри оборудования будет иметь немаловажное значение. Кстати, и АКБ автомобиля без подзарядки может разрядиться при длительной работе маячка.

Так, например, «классический» маячок оперативных и аварийных служб (синий, красный, оранжевый - соответственно) при питании от источника постоянного напряжения 12 В потребляет ток более 2,2 А, который складывается из потребляемого электродвигателем (вращающим патрон) и самой лампой. При работе проблескового импульсного маячка ток потребления снижается до 0,9 А. Если же вместо импульсной схемы собрать светодиодную (об этом ниже), ток потребления сократится до 300 мА (зависит от мощности применённых светодиодов). Экономия в стоимости деталей также ощутима.

Конечно, не изучен вопрос о силе света (или, лучше сказать, его интенсивности) от тех или иных проблесковых устройств, поскольку автор не имел и не имеет специальной аппаратуры (люксометра) для такого теста. Но в силу новаторских решений, предложенных ниже, данный вопрос становится второстепенным. Ведь даже относительно слабые световые импульсы (в частности от светодиодов), пропущенные сквозь призму неоднородного стекла колпачка маячка в ночное время более чем достаточны для того, чтобы маячок заметили за несколько сотен метров. Именно в этом смысл дальнего предупреждения, не правда, ли?

Теперь рассмотрим электрическую схему «заменителя лампы» проблескового маячка (рис. 1).

Эту электрическую схему мультивибратора можно с полным правом назвать простой и доступной. Устройство разработано на основе популярного интегрального таймера КР1006ВИ1, содержащего два прецизионных компаратора, обеспечивающих погрешность сравнения напряжений не хуже ±1%. Таймер неоднократно использовался радиолюбителями для построения таких популярных схем и устройств, как реле времени, мультивибраторы, преобразователи, сигнализаторы, устройства сравнения напряжения и другие.

В состав устройства, кроме интегрального таймера DA1 (многофункциональная микросхема КР1006ВИ1), входят ещё времязадающий оксидный конденсатор С1, делитель напряжения R1R2. С3 выхода микросхемы DA1 (ток до 250 мА) управляющие импульсы поступают на светодиоды HL1-HL3.

Принцип работы устройства

Включение маячка осуществляется с помощью включателя SB1. Принцип работы мультивибратора подробно описан в литературе.

В первый момент на выводе 3 микросхемы DA1 высокий уровень напряжения - и светодиоды горят. Оксидный конденсатор С1 начинает заряжаться через цепь R1R2.

Спустя примерно одну секунду (время зависит от сопротивления делителя напряжения R1R2 и ёмкости конденсатора С1 напряжение на обкладках этого конденсатора достигает величины, необходимой для срабатывания одного из компараторов в едином корпусе микросхемы DA1. При этом напряжение на выводе 3 микросхемы DA1 устанавливается равным нулю - и светодиоды гаснут. Так продолжается циклически, пока на устройство подано напряжение питания.

Кроме указанных на схеме, в качестве HL1-HL3 рекомендую использовать мощные светодиоды HPWS-T400 или аналогичные с током потребления до 80 мА. Можно применять и только один светодиод из серий LXHL-DL-01, LXHL-FL1C, LXYL-PL-01, LXHL-ML1D, LXHL-PH01,

LXHL-MH1D производства Lumileds Lighting (все - оранжевого и краснооранжевого цвета свечения).

Напряжение питания устройства можно довести до 14,5 В, тогда его можно подключать в бортовую автомобильную сеть даже при работающем двигателе (а точнее - генераторе).

Особенности конструкции

Плата с тремя светодиодами устанавливается в корпус проблескового маячка вместо «тяжеловесной» штатной конструкции (лампы с вращающимся патроном и электродвигателем).

Для того чтобы выходной каскад обладал ещё большей мощностью, потребуется установить в точку А (рис. 1) усилитель тока на транзисторе VT1 так, как это показано на рисунке 2.

После подобной доработки можно применять по три параллельно включенных светодиода типов LXHL-PL09, LXHL-LL3C (1400 мА),

UE-HR803RO (700 мА), LY-W57B (400 мА) - все оранжевого цвета. При этом общий ток потребления соответственно увеличится.

Вариант с лампой-вспышкой

У кого сохранились детали фотоаппаратов со встроенной вспышкой, тот может пойти и другим путём. Для этого старую лампу-вспышку демонтируют и подключают в схему так, как показано на рисунке 3. С помощью представленного преобразователя, подключаемого также в точку А (рис. 1), на выходе устройства с низким напряжением питания получают импульсы амплитудой 200 В. Напряжение питания в данном случае однозначно увеличивают до 12 В.

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

Готовые мигающие светодиоды и схемы с их использованием

Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах. Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

Трёхцветный (RGB) мигающий светодиод с четырьмя выводами имеет общий анод (катод) и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления.

Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы.

Область применения

Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

Читайте так же

Loading...Loading...