Установка втг. Вихревой теплогенератор своими руками. Вихревые теплогенераторы

В связи с высокими ценами на промышленное отопительное оборудование многие умельцы собираются делать своими руками экономичный нагреватель вихревой теплогенератор.

Такой теплогенератор представляет собой всего лишь немного видоизмененный центробежный насос. Однако, чтобы собрать самостоятельно подобное устройство, даже имея все схемы и чертежи, нужно иметь хотя бы минимальные знания в данной сфере.

Принцип работы

Теплоноситель (чаще всего используют воду) попадает в кавитатор, где установленный электродвигатель производит его раскручивание и рассечение винтом, в результате образуются пузырьки с парами (это же происходит, когда плывет подводная лодка и корабль, оставляя за собой специфический след).

Двигаясь по теплогенератору, они схлопываются, за счет чего выделяется тепловая энергия. Такой процесс и называется кавитацией.

Исходя из слов Потапова, создателя кавитационного теплогенератора, принцип работы данного типа устройства основан на возобновляемой энергии. За счет отсутствия дополнительного излучения, согласно теории, КПД такого агрегата может составлять около 100%, так как практически вся используемая энергия уходит на нагрев воды (теплоносителя).

Создание каркаса и выбор элементов

Чтобы сделать самодельный вихревой теплогенератор, для подключения его к отопительной системе, потребуется двигатель.

И, чем больше будет его мощность, тем больше он сможет нагреть теплоноситель (то есть быстрее и больше будет производить тепла). Однако здесь необходимо ориентироваться на рабочее и максимальное напряжение в сети, которое к нему будет подаваться после установки.

Производя выбор водяного насоса, необходимо рассматривать только те варианты, которые двигатель сможет раскрутить. При этом, он должен быть центробежного типа, в остальном ограничений по его выбору нет.

Также нужно приготовить под двигатель станину. Чаще всего она представляет собой обычный железный каркас, куда крепятся железные уголки. Размеры такой станины будут зависеть, прежде всего, от габаритов самого двигателя.

После его выбора необходимо нарезать уголки соответствующей длины и осуществить сварку самой конструкции, которая должна позволить разместить все элементы будущего теплогенератора.

Далее нужно для крепления электродвигателя вырезать еще один уголок и приварить к каркасу, но уже поперек. Последний штрих, в подготовке каркаса – это покраска, после которой уже можно крепить силовую установку и насос.

Конструкция корпуса теплогенератора

Такое устройство (рассматривается гидродинамический вариант) имеет корпус в виде цилиндра.

Соединяется с отопительной системой он через сквозные отверстия, которые у него находятся по бокам.

Но основным элементом этого устройства является именно жиклер, находящийся внутри этого цилиндра, непосредственно рядом с входным отверстием.

Обратите внимание: важно, чтобы размер входного отверстия жиклера имел размеры соответствующие 1/8 от диаметра самого цилиндра. Если его размер будет меньше этого значения, то вода физически не сможет в нужном количестве через него проходить. При этом насос будет сильно нагреваться, из-за повышенного давления, что также будет оказывать негативное влияние и на стенки деталей.

Как изготовить

Для создания самодельного генератора тепла понадобится шлифовальная машинка, электродрель, а также сварочный аппарат.

Процесс будет происходить следующим образом:

  1. Сначала нужно отрезать кусок достаточно толстой трубы, общим диаметром 10 см, а длиной не более 65 см. После этого на ней нужно сделать внешнюю проточку в 2 см и нарезать резьбу.
  2. Теперь из точно такой же трубы необходимо сделать несколько колец, длиной по 5 см, после чего нарезается внутренняя резьба, но только с одной её стороны (то есть полукольца) на каждой.
  3. Далее нужно взять лист металла толщиной, аналогичной с толщиной трубы. Сделайте из него крышки. Их нужно приварить к кольцам с той стороны, где у них нет резьбы.
  4. Теперь нужно сделать в них центральные отверстия. В первой оно должно соответствовать диаметру жиклера, а во второй диаметру патрубка. При этом, с внутренней стороны той крышки, которая будет использоваться с жиклером, нужно сделать, используя сверло, фаску. В итоге должна выйти форсунка.
  5. Теперь подключаем ко всей этой системе теплогенератор. Отверстие насоса, откуда вода подается под давлением, нужно присоединить к патрубку, находящемуся возле форсунки. Второй патрубок соедините со входом уже в саму отопительную систему. А вот выход из последней подключите ко входу насоса.

Таким образом, под давлением, создаваемым насосом, теплоноситель в виде воды начнет проходить через форсунку. За счет постоянного движения теплоносителя внутри этой камеры он и будет нагреваться. После этого она попадает уже непосредственно в систему отопления. А чтобы была возможность регулировать получаемую температуру, нужно за патрубком установить шаровой кран.

Изменение температуры будет происходить при изменении его положения, если он будет меньше пропускать воды (будет находиться в полузакрытом положении). Вода будет дольше находиться и двигаться внутри корпуса, за счет чего её температура увеличится. Именно таким образом и работает подобный водонагреватель.

Смотрите видео, в котором даются практические советы по изготовлению вихревого теплогенератора своими руками:

Множество полезных изобретений осталось невостребованными. Это происходит из-за человеческой лени или из-за страха перед непонятным. Одним из таких открытий долгое время был вихревой теплогенератор. Сейчас на фоне тотальной экономии ресурсов, стремлению к использованию экологически чистых источников энергии, теплогенераторы стали применять на практике для отопления дома или офиса. Что же это такое? Прибор, который раньше разрабатывался только в лабораториях, или новое слово в теплоэнергетике.

Система отопления с вихревым теплогенератором

Принцип действия

Основой работы теплогенераторов является преобразование механической энергии в кинетическую, а затем – в тепловую.

Еще в начале ХХ столетия Жозеф Ранк обнаружил сепарацию вихревой струи воздуха на холодную и горячую фракции. В середине прошлого века немецкий изобретатель Хилшем модернизировал устройство вихревой трубы. Спустя немного времени, русский ученый А. Меркулов запустил в трубу Ранке вместо воздуха воду. На выходе температура воды значительно повысилась. Именно этот принцип лежит в основе работы всех теплогенераторов.

Проходя через водяной вихрь, вода образует множество воздушных пузырьков. Под воздействием давления жидкости пузырьки разрушаются. Вследствие этого освобождается какая-то часть энергии. Происходит нагрев воды. Этот процесс получил название кавитация. На принципе кавитации рассчитывается работа всех вихревых теплогенераторов. Генератор такого типа называется «кавитационный».

Виды теплогенераторов

Все теплогенераторы делятся на два основных вида:

  1. Роторный. Теплогенератор, в котором вихревой поток создается при помощи ротора.
  2. Статический. В таких видах водяной вихрь создается при помощи специальных кавитационных трубок. Давление воды производит центробежный насос.

Каждый вид обладает своими преимуществами и недостатками, на которых следует остановиться подробнее.

Роторный теплогенератор

Статором в данном устройстве служит корпус центробежного насоса.

Роторы могут быть различные. В интернете представлено множество схем и инструкций по их выполнению. Теплогенераторы – скорее научный эксперимент, постоянно находящийся в процессе разработки.

Конструкция роторного генератора

Корпусом является пустотелый цилиндр. Расстояние между корпусом и вращающейся частью рассчитывается индивидуально (1.5-2 мм).

Нагревание среды происходит благодаря ее трению с корпусом и ротором. Помогают этому пузырьки, которые образуются за счет кавитации воды в ячейках ротора. Производительность таких устройств на 30% выше статических. Установки довольно шумные. Имеют повышенную изношенность деталей, за счет постоянного воздействия агрессивной среды. Требуется постоянный контроль: за состоянием сальников, уплотнителей и др. Это значительно усложняет и удорожает обслуживание. При их помощи редко монтируют отопление дома, им нашли немного другое применение – обогрев больших производственных помещений.

Модель промышленного кавитатора

Статический теплогенератор

Основной плюс данных установок в том, что в них ничего не вращается. Электроэнергия тратится только на работу насоса. Кавитация происходит при помощи естественных физических процессов в воде.

КПД таких установок иногда превышает 100%. Средой для генераторов может быть жидкость, сжатый газ, тосол, антифриз.

Разница между температурой входа и выхода может достигать 100⁰С. При работе на сжатом газе, его вдувают по касательной в вихревую камеру. В ней он ускоряется. При создании вихря, горячий воздух проходит сквозь коническую воронку, а холодный возвращается. Температура может достигать 200⁰С.

Достоинства:

  1. Может обеспечить большую разность температур на горячем и холодном концах, работать при низком давлении.
  2. КПД не ниже 90%.
  3. Никогда не перегревается.
  4. Пожаро,- и взрывобезопасен. Может использоваться во взрывоопасной среде.
  5. Обеспечивает быстрый и эффективный нагрев всей системы.
  6. Может использоваться как для обогрева, так и для охлаждения.

В настоящее время применяется недостаточно часто. Используют кавитационный теплогенератор, чтобы удешевить отопление дома или производственных помещений при наличии сжатого воздуха. Недостатком остается довольно высокая стоимость оборудования.

Теплогенератор Потапова

Популярным и более изученным является изобретение теплогенератора Потапова. Он считается статическим устройством.

Сила давления в системе создается центробежным насосом. Струя воды подается с большим напором в улитку. Жидкость начинает разогреваться благодаря вращению по изогнутому каналу. Она попадает в вихревую трубу. Метраж трубы должен быть больше ширины в десятки раз.

Схема устройства генератора

  1. Патрубок
  2. Улитка.
  3. Вихревая труба.
  4. Верхний тормоз.
  5. Выпрямитель воды.
  6. Соединительная муфта.
  7. Нижнее тормозное кольцо.
  8. Байпас.
  9. Отводная линия.

Вода проходит по расположенной вдоль стенок винтовой спирали. Дальше поставлено тормозное устройство для выведения части горячей воды. Струя немного разравнивается пластинами, прикрепленными к втулке. Внутри имеется пустое пространство, соединенное с еще одним тормозным устройством.

Вода с высокой температурой поднимается, а холодный вихревой поток жидкости спускается по внутреннему пространству. Холодный поток соприкасается с горячим через пластины на втулке и нагревается.

Теплая вода спускается к нижнему тормозному кольцу и еще подогревается благодаря кавитации. Подогретый поток от нижнего тормозного устройства проходит через байпас в отводящий патрубок.

Верхнее тормозное кольцо имеет проход, диаметр которого равен поперечнику вихревой трубы. Благодаря ему горячая вода может попасть в патрубок. Происходит смешивание горячего и теплого потока. Дальше вода используется по назначению. Обычно для обогрева помещений или бытовых нужд. Обрат присоединяется к насосу. Патрубок – к входу в систему отопления дома.

Чтобы установить теплогенератор Потапова, необходима диагональная разводка. Горячий теплоноситель нужно подавать в верхний ход батареи, а из нижнего будет выходить холодный.

Генератор Потапова собственными силами

Существует много промышленных моделей генератора. Для опытного мастера не составит труда изготовить вихревой теплогенератор своими руками :

  1. Вся система должна быть надежно закреплена. При помощи уголков изготавливают каркас. Можно использовать сварку или болтовое соединение. Главное, чтобы конструкция была прочной.
  2. На станине укрепляют электродвигатель. Его подбирают соответственно площади помещения, внешним условиям и имеющемуся напряжению.
  3. На раме крепится водяной насос. При его выборе учитывают:
  • насос необходим центробежный;
  • у двигателя хватит сил для его раскрутки;
  • насос должен выдерживать жидкость любой температуры.
  1. Насос присоединяется к двигателю.
  2. Из толстой трубы диаметром 100 мм изготавливается цилиндр длиной 500-600 мм.
  3. Из толстого плоского металла необходимо изготовить две крышки:
  • одна должна иметь отверстие под патрубок;
  • вторая под жиклер. На краю делается фаска. Получается форсунка.
  1. Крышки к цилиндру лучше крепить резьбовым соединением.
  2. Жиклер находится внутри. Его диаметр должен быть в два раза меньше ¼ части диаметра цилиндра.

Очень маленькое отверстие приведет к перегреву насоса и быстрому износу деталей.

  1. Патрубок со стороны форсунки подключается к подаче насоса. Второй подключают к верхней точке системы отопления. Остывшая вода из системы подключается к входу насоса.
  2. Вода под давлением насоса подается в форсунку. В камере теплогенератора ее температура увеличивается благодаря вихревым потокам. Потом она подается в отопление.

Схема кавитационного генератора

  1. Жиклер.
  2. Вал электродвигателя.
  3. Вихревая труба.
  4. Входящая форсунка.
  5. Отводящий патрубок.
  6. Гаситель вихрей.

Для регулирования температуры, за патрубком ставят задвижку. Чем меньше она открыта, тем дольше вода в кавитаторе, и тем выше ее температура.

При прохождении воды через жиклер, получается сильный напор. Он бьет в противоположную стену и за счет этого закручивается. Поместив в середину потока дополнительную преграду, можно добиться большей отдачи.

Гаситель вихрей

На этом основана работа гасителя вихрей:

  1. Изготавливается два кольца, ширина 4-5 см, диаметр немного меньше цилиндра.
  2. Из толстого металла вырезается 6 пластин длиной ¼ корпуса генератора. Ширина зависит от диаметра и подбирается индивидуально.
  3. Пластины закрепляются внутрь колец друг напротив друга.
  4. Гаситель вставляется напротив сопла.

Разработки генераторов продолжаются. Для увеличения производительности с гасителем можно экспериментировать.

В результате работы происходят теплопотери в атмосферу. Для их устранения можно изготовить теплоизоляцию. Сначала ее делают из металла, а поверх обшивают любым изолирующим материалом. Главное, чтобы он выдерживал температуру кипения.

Для облегчения введения в эксплуатацию и обслуживания генератора Потапова необходимо:

  • окрасить все металлические поверхности;
  • изготавливать все детали из толстого металла, так теплогенератор дольше прослужит;
  • во время сборки есть смысл изготовить несколько крышек с различным диаметром отверстий. Опытным путем подбирается оптимальный вариант для данной системы;
  • до подключения потребителей, закольцевав генератор, необходимо проверить его герметичность и работоспособность.

Гидродинамический контур

Для правильного монтажа вихревого теплогенератора необходим гидродинамический контур.

Схема подключения контура

Для его изготовления необходимы:

  • выходной манометр, для измерения давления на выходе из кавитатора;
  • термометры для измерения температуры до и после теплогенератора;
  • сбросной кран для удаления воздушных пробок;
  • краны на входе и выходе;
  • манометр на входе, для контроля давления насоса.

Гидродинамический контур упростит обслуживание и контроль за работой системы.

При наличии однофазной сети, можно использовать частотный преобразователь. Это позволит поднять скорость вращения насоса, подобрать правильную.

Вихревой теплогенератор применяется для отопления дома и подачи горячей воды. Имеет ряд преимуществ перед другими обогревателями:

  • установка теплогенератора не требует разрешительных документов;
  • кавитатор работает в автономном режиме и не требует постоянного контроля;
  • является экологически чистым источником энергии, не имеет вредных выбросов в атмосферу;
  • полная пожаро,- и взрывобезопасность;
  • меньший расход электричества. Неоспоримая экономичность, КПД приближается к 100%;
  • вода в системе не образует накипи, не требуется дополнительная водоподготовка;
  • может использоваться как для отопления, так и для подачи горячей воды;
  • занимает мало места и легко монтируется в любую сеть.

С учетом всего этого, кавитационный генератор становится более востребованным на рынке. Такое оборудование с успехом применяют для отопления жилых и офисных помещений.

Поиски альтернативного способа получения энергии порождают многочисленные изобретения, суть которых не совсем ясна обычным обывателям. При этом разговоры о 110, 200 и даже 400 % КПД создают ажиотаж вокруг этих разработок. Эта тенденция не обошла стороной и вихревые теплогенераторы, которые появились на рынке отопительных систем в 90-х годах прошлого века. Что же представляет из себя это чудо-устройство?

Как говорят многочисленные источники – вихревой теплогенератор успешно преобразовывает электроэнергию в тепловую. Точный механизм этого процесса не описан о сих пор, но его родоначальником считается ученый Григгс, который и создал первую модель такого генератора. Устройство представляло собой электрический двигатель с двухсторонним ротором, при прохождении воздуха через который происходила его очистка.

Но во время испытаний было замечено разделение воздушных потоков, один из которых имеет высокую температуру. Впоследствии была попытка применения воды в качестве среды обработки. Это нововведение и послужило началом современных моделей вихревых теплогенераторов.

Возможный принцип их работы показан на рисунке:

Вода, поступающая к ротору, при попадании в вихревые потоки начинает генерацию процесса кавитации. Он характеризуется образованием небольших по размерам пузырьков воздуха, на границах которых возникает высокая температура. Они могут являться источниками нагрева жидкости. В дальнейшем масса воды с более высокой температурой поступает в конденсационный сборник или . Остальная холодная по трубам вновь направляется к ротору. При этом она может смешиваться с уже остывшим теплоносителем из обратной трубы системы отопления.

Производством подобных систем занимаются несколько предприятий. В основном их продукция предназначена для организации отопления больших площадей, но встречаются и бытовые модели.

Вихревые теплосистемы

Удмуртское предприятие ООО «Вихревые теплосистемы» уже довольно давно выпускает подобные приборы нагрева воды. В ассортименте их продукции можно найти и небольшие по мощности установки и комплексы по глобальному решению вопроса отопления больших зданий и производственных помещений.

ВТГ – 2,2

Это самая маломощная установка из всех, которые выпускает компания. Она рассчитана на обогрев помещения с объемом до 90 м³. Принцип действия не отличается от вышеописанного – на ротор двигателя устанавливается специальный шнек, через который проходит водяной поток. После нагрева теплоноситель попадает в систему отопительных труб.

Его стоимость составляет около 34 тыс.руб.

ВТГ – 2,2 Характеристики

ВТГ – 30

Средняя модель вихревого теплогенератора. Она рассчитана на большие помещения, чем предыдущая – до 1 400 м³. Вместе с ней рекомендуется приобретать шкаф управления, который предназначен для автоматизации всего процесса нагрева жидкости.

Стоимость – 150 тыс.руб.

В настоящее время линейка продукции компании включает более 16 моделей теплогенераторов, отличающихся мощностью.

ВТГ – 30 Характеристики

ИПТО

Небольшая производственная компания из Ижевска «ИПТО» также наладила выпуск вихревых теплогенераторов.

Теплогенератор ИПТО состоит из электродвигателя и цилиндрической насадки. Конструкция последней представляет собой циклон с тангенциальным входом. Двигатель работает в режиме насоса, нагнетая водяные массы в цилиндрическую насадку. Там они создают вихревой поток, который впоследствии останавливается тормозным устройством. На этом этапе и происходит нагрев теплоносителя.

ИПТО Характеристики и цены

Как заявляют производители, КПД их продукции превышает 100%. Для некоторых моделей показатели равны 150%. Испытания проводились на технических площадках специализированных институтов – РКК «Энергия» и в ЦАГЕ им. . Однако точные данные на сайте производителя не представлены.

Данные компании являются самыми большими производителями вихревых теплогенераторов. Но помимо них существует множество фирм, которые на производственной базе различных предприятий готовы изготовить аналоги теплогенераторов.

Википедия утверждает, что теплогенератором является устройство, которое вырабатывает тепло сжиганием некоего топлива. Сразу возникает вопрос: что именно необходимо сжечь в вихревом теплогенераторе ТГ, ионном генераторе тепла или электродном котле? Далее, приводится схема со стандартной процедурой сгорания топлива в соответствующей камере, передачей тепла потребителю и фактически утверждаются ограничения на сферу применения вихревых и прочих тепогенераторов - только небольшие здания и индивидуальное отопление.

Поскольку даже электродные котлы способны отапливать солидные здания, хочу уличить википедию в безграмотности следующими доводами.

Принцип действия вихревых теплогенераторов

Изначально явление вихревой кавитации было открыто в ходе наблюдений за поведением и работой лопастей судовых винтов. Сразу же открытое явление приобрело негативную оценку, поскольку приводило к повреждениям и преждевременному износу лопастей. Однако, сегодня кавитация используется для экономичного отопления и нагрева воды в вихревых теплогенераторах, которые производит наше предприятие.

«Приручив» эффект кавитации, удалось создать высокоэффективный вихревой теплогенератор, в основу работы которого положен довольно простой принцип: создание вихревых потоков воды. Для этого используется стандартный асинхронный двигатель, который путем смешивания обратного и возмущающего потоков воды создает мощные завихрения, приводящие к образованию микроскопических пузырьков газа.

Специальная конструкция гидродинамического смесителя и нагнетаемое насосом давление воды вынуждает пузырьки газа схлопываться, высвобождая огромное количество тепловой энергии. Внутренняя температура пузырьков в момент схлопывания доходит до 1500°С. Можете себе представить какой потенциал кроется в простой воде.

В сравнении с установками прямого электрического нагрева, вихревые теплогенераторы имеют гораздо более высокое отношение полезной выходной тепловой мощности к потребляемой мощности.

Этот показатель может быть в разы больше и даже превышать единицу. Это обстоятельство получило в исследовательской среде название «сверхединичности», то есть способность отдавать с одного затраченного киловатта энергии полтора и больше киловатта тепла на выходе. Эта «сверхединичность» выходит за пределы научных академических догм, поэтому официальное объяснение этого механизма отсутствует. Не взирая на это, независимым исследователям удалось построить адекватную модель кавитационного процесса, в которой не применяются «эзотерические» гипотезы. При этом «сверхединичность» получает естественное обоснование, которое совершенно не противоречит базовым законам сохранения энергии.

Немного теории

Первым шагом в данной модели служит ревизия представлений о содержании термина «кавитационный пузырек».

В соответствии с правилами термодинамики, преобразование электрической энергии в тепловую невозможно со 100%-ой эффективностью и коэффициент полезного действия генератора тепла может принимать значения в пределах 100% (или единицы).

Однако, имеются подтвержденные факты работы кавитационных вихревых теплогенераторов с КПД равным 100% и более. К примеру, официально зафиксированы государственные испытания теплового кавитационного насоса Белорусской фирмы «Юрле», которые были проведены Институтом тепло- и массообмена им. А.В. Лыкова Национальной Академии Наук АН Беларуси. Подтвержденный коэффициент преобразования составил 0,975-1,15 (без учета тепловых потерь в окружающую среду) ». Ряд производителей реализуют кавитационные вихревые теплогенераторы с коэффициентом полезного действия 1.25 и 1.27. Бесперебойно и экономно функционируют вихревые теплогенераторы нашей компании, которые в определённых режимах работы демонстрируют превышение полезной тепловой мощности над потребляемой электрической мощностью в 1.48 раза и более.

Отклик научной среды на эти достижения ожидаемый: ученые мужи старательно их игнорируют, делая вид, что данных фактов не существует (пример этого на видео). Но разгадка парадокса «сверхединичности» есть и, по нашему мнению, ответ здесь довольно прост. В перечисленных устройствах электроэнергия не трансформируется в нагревание воды, а всего лишь служит инструментом поддержания самого процесса.

Служит своеобразным катализатором, в присутствии которого имеет место перераспределение энергий, изначально свойственных самой воде. В процессе этого перераспределения, конфигурация различных видов энергий в структуре теплоносителя меняется таким образом, что это приводит к росту температуры воды.

Выдвигаемая ниже версия этих процессов является прямым следствием современных представлений о температуре и теплоте, предлагаемых независимыми исследователями. Приведем вкратце тезисы этой теории:

  1. Температура тела – это не показатель содержания энергии в теле. Это параметр, характеризующий распределение различных видов энергии в объекте. Суммарно общее количество энергий объекта не изменяется и сохраняется постоянным при любой температуре.
  2. Во время теплового контакта двух тел с разными температурами тепловая энергия не переходит от горячего тела к холодному, несмотря на то, что их температура выравнивается и устанавливается равной для обоих. В действительности, в каждом из тел имеет место перераспределение своих внутренних энергий.
  3. Температуру объекта можно повысить без передачи ему энергии со стороны и, не совершая работы над ним.

Вероятно, такой нагрев теплоносителя происходит во время функционирования вихревых теплогенераторов благодаря кавитации. В таком случае, потребляемая мощность из электросети, расходуется на понижение давления в воде локально. По этой причине в воде формируются кавитационные агрегаты молекул. Следующий этап трансформации этих молекул не связан с потреблением электроэнергии или ее мощностью. Как было описано ранее, нагрев кавитационных объектов-молекул, приводящий к эффективному тепловому результату, не нуждается в дополнительных интервенциях электроэнергии извне. Соответственно, так как тепловая энергия на выходе оборудования здесь не зависит от электрической мощности на входе, то какие-либо запреты на превышение полезной мощности над потребляемой отсутствуют. Собственно, положения данной теории успешно воплощены в кавитационных вихревых теплогенераторах, а ее тезисы достигаются в правильно подобранных функциональных режимах.

Поэтому «запредельный» КПД (более 100%) этих режимов, в соответствии с предлагаемой теорией, совершенно не противоречит классическому закону сохранения энергии. В пример, можно привести аналогию с функционированием слаботочного реле, которое переключает высокоамперные токи. Либо работу детонатора, которая приводит к мощному взрыву.

Надо отметить, что работа именно вихревого теплогенератора стала своеобразным маркером, который столь ярко и наглядно демонстрирует «сверхединичность» процессов преобразования энергии, вразрез с устоявшимися академическими догмами. Предлагаем взглянуть на «сверхединичность» с иной позиции: если соответствующее оборудование не дотягивает до «сверхединичности», то это говорит о несовершенной конструкции изделия или о неверно выбранном режиме функционирования.

Отметим важное положительное практическое свойство вихревого теплогенератора: удачная конструкция, которая формирует кавитационные агрегаты молекул, вызывая их взрывную конденсацию, не приводит их в соприкосновение с рабочими частями изделия и даже близко к ним. Кавитационные пузырьки двигаются в свободном объёме воды. В результате, в ходе многолетней эксплуатации вихревого оборудования, практически полностью отсутствуют симптомы кавитационной эрозии. В тоже время, это очень существенно снижает уровень акустического шума, возникающего вследствие кавитации.

Купить вихревой теплогенератор

Приобрести требуемую модель вихревого теплогенератора или согласовать условия поставки, монтажа, получить примерную смету затрат Вы можете, связавшись с нами по любой контактной форме на этой странице.

Когда заходит речь об отопительных системах и приборах для обогрева жилого дома, то сразу возникает множество мнений.

Одни утверждают, что лучше газового отопления ничего не существует, другие доказывают эффективность , третьи – никак не нарадуются . Несомненно, все виды отопления имеют свои преимущества, но мы хотели бы обратить внимание на обогрев жилища электричеством.

Главным преимуществом такого вида обогрева является удобство эксплуатации: ведь не нужно заготавливать топливо и постоянно очищать оборудование от продуктов сгорания. Некоторые скептики, читая эти строки, резонно могут заметить: а как же быть с постоянным подорожанием электроэнергии? Куда же тогда девается эффективность электрического оборудования для отопления?

Смело можно ответить: в последнее время набирает популярности вихревый индукционный нагреватель, который создан на основе передовых современных технологий. Стоит также отметить, что расходы на этот вид электрического отопления значительно сокращены. (Об особенностях индукционного отопления читайте ).

Поэтому, в этой статье мы подробно расскажем, что собой представляет вихревый индукционный нагреватель (сокращенно – ВИН), а также опишем все его преимущества и недостатки.

Конструкция

Вихревый индукционный обогреватель представляет собой прибор, в котором для подогрева теплоносителя используется энергия электромагнитного поля.

Иначе говоря, ВИН преобразует этот вид энергии в тепловую.

Этот вид индукционного котла состоит из следующих конструктивных частей:

  1. Нагревательный элемент, как правило, представлен в виде металлической трубы, которая помещается в электромагнитное поле.
  2. Индуктор, который является генератором электромагнитного поля. Обычно он представлен в виде цилиндра, состоящего из витков медной проволоки.
  3. Генератор переменного тока. Этот узел отвечает за преобразование обычной электроэнергии в высокочастотный ток.

Принцип работы ВИН

Принцип индукционного нагрева Алгоритм функционирования вихревого индукционного нагревателя заключается в следующих последовательных действиях:

  • генератор образует высокочастотный ток и подает его на индуктор;
  • индуктор, принимая этот ток, создает возле цилиндрической катушки электромагнитное поле;
  • нагревательный элемент, который находится внутри катушки из медной проволоки, разогревается с помощью вихревых токов, которые созданы электромагнитным полем;
  • теплоноситель, который находится внутри нагревательного элемента, одновременно с ним разогревается, и непосредственно подается к радиаторам отопления.

Важный факт: весь процесс работы ВИН происходит практически без энергетических потерь.

Преимущества и недостатки

Согласно отзывам владельцев ВИН, использование нагревателя этого вида имеет целый ряд достоинств, к которым можно отнести следующие важные моменты:

Для большей убедительности преимуществ этого вида котлоагрегата, приведем для примера технические характеристики нагревателя модели ВИН-15:

Трудно не согласиться, что это достаточно позитивные характеристики котла этой модели.

К основным негативным моментам использования вихревого индукционного нагревателя можно отнести следующее:

  • электромагнитное поле разогревает не только теплообменник, но и все окружающие предметы, в том числе и человеческие ткани;
  • Важный момент: человеку не стоит долго находиться возле индукционного нагревателя!

  • если в поле действия электромагнитного поля окажется ферромагнитное изделие, то это неминуемо будет приводить к перегреву котла из-за дополнительного намагничивания;
  • высокий уровень теплоотдачи создает риск детонации ВИН от перегрева.

Совет специалиста: чтобы не допустить детонации, можно дополнительно установить датчик давления.

Как видим, недостатков индукционного котла гораздо меньше, чем преимуществ. Их вполне можно сократить, если придерживаться вышеуказанных рекомендаций. В этой статье мы подробно изложили все аспекты использования вихревого индукционного нагревателя. Надеемся, что наша информация поможет вам при установке ВИН в вашем доме.

Смотрите видео, в котором показаны особенности работы вихревого индукционного нагревателя ВИН, а также отзывы об этом оборудовании:

Loading...Loading...