Обшивка самолета. Конструктивные типы самолётов. Соединение обшивки и элементов каркаса

Обшивка самолета – оболочка, формирующая оперение и внешнюю поверхность корпуса воздушного судна. Она необходима для придания самолету обтекаемой формы. От того, насколько качественной будет обшивка, во многом зависят аэродинамические показатели самолета.

Материал обшивки

Современная обшивка самолетов производится из панелей или отдельных листов из алюминиевых сплавов (или титана и нержавеющей стали), отформованных по поверхности крыльев или фюзеляжа. Несъемные панели или листы чаще всего крепятся к каркасу потайной клепкой, съемные же соединяются с помощью винтов с головкой «впотай». Листы обшивки соединяются встык. Нередко для обшивочных фюзеляжей используются крупномонолитные оребренные панели и слой обшивки с сотовым заполнителем. Обтекатели антенн (радиопрозрачные элементы обшивки) выполняются из сотового или монолитного композиционного материала. Также в последнее время композиты применяются в качестве панелей обшивки и силовых узлов.

В зависимости от используемого материала для строительства воздушного судна обшивка самолета может быть:

  • металлическая: сталь, алюминиевые сплавы, титан;
  • деревянная (шпон или фанера);
  • перкальная (полотняная);
  • композитные материалы;
  • ламинированная пленка.

История обшивки самолета

Первые летательные аппараты имели обшивку, выполненную из полотна, которое пропитывалось лаком (отсюда, собственно, и появилось само название), фюзеляжи довольно часто и вовсе не имели обшивки. Позже обшивку начали делать из древесины – фанеры и шпона, которые тоже пропитывались лаком.

С развитием технологий обшивка делалась из алюминия, гладкого и гофрированного. На сегодняшний день используется исключительно гладкая металлическая обшивка. Правда, на легких летательных аппаратах еще можно встретить полотняную обшивку. Это крайне редкое явление, так как ее эффективно заменяют полимерными пленками.

Виды обшивок

В авиации существует два типа обшивки – мягкая «неработающая» и жесткая «работающая». В наше время преимущество имеет жесткая металлическая обшивка, так как она полностью соответствует требованиям прочности, аэродинамики, массы и жесткости. Она воспринимает нагрузки в виде крутящих и изгибающих моментов, внешние аэродинамические нагрузки и нагрузки перерезывающих сил, воздействующих на каркас самолета. Материалы для производства работающей обшивки: титановые, алюминиевые и стальные сплавы, авиационная фанера, композиционные материалы. Титан и сталь чаще всего встречаются в конструкциях сверхзвуковых самолетов.

Несиловая обшивка не включается в силовую схему, так как нагрузка с обшивки сразу же передается на каркас. Материалом для ее изготовления может служить перкаль (полотно).

Обшивка крыла

В зависимости от типа конструкции обшивка оперения и крыла может быть толстой, состоящей из монолитной фрезерованной или прессованной панели, трехслойной или тонкой, подкрепленной специальным стрингерным набором. При этом в межобшивочном пространстве находится специальный заполнитель (соты из пенопласта, фольги или специальной гофры). Важно, чтобы обшивка крыла сохраняла заданную форму и была жесткой. Образование складок на ней провоцирует аэродинамическое сопротивление.

Верхняя обшивка крыла под действием изгибающего момента нагружена циклическими сжимающими усилиями, а нижняя, соответственно, растягивающими. По этой причине для верхних сжатых панелей, как правило, используются высокопрочные материалы, прекрасно продемонстрировавшие себя на сжатие. В свою очередь для нижней растянутой обшивки применяют материалы, характеризующиеся высокими усталостными характеристиками. Материал обшивки для сверхзвуковых самолетов выбирается с учетом нагревания в полете – обычные алюминиевые сплавы, теплостойкие алюминиевые сплавы, сталь или титан.

Для повышения прочности и живучести обшивки по длине крыла самолета количество стыков, имеющих меньший ресурс по сравнению с главным полотном обшивки, стремятся максимально сократить. Вес обшивки крыла – 25-50% от всей массы.

Обшивка фюзеляжа

Сразу стоит отметить, что она выбирается с учетом действующей нагрузки. Нижняя зона обшивки воспринимает сжимающие нагрузки той частью, которая присоединена к стрингерам, а верхняя воспринимает растягивающие усилия абсолютно всей площадью обшивки. Толщина обшивки в герметичном фюзеляже выбирается в зависимости от внутреннего избыточного давления. Для улучшения живучести фюзеляжа на обшивке нередко используют ленты-стопперы, исключающие распространение трещин.

Соединение обшивки и элементов каркаса

Прибегают к трем способам соединения каркаса с обшивкой:

  • обшивка крепится к шпангоутам;
  • обшивка крепится к стрингерам;
  • обшивка крепится и к шпангоутам, и к стрингерам.

Во втором случае формируются только продольные заклепочные швы, при этом поперечные отсутствуют, что положительно сказывается на аэродинамике фюзеляжа. Незакрепленная обшивка на шпангоутах при меньших нагрузках теряет устойчивость, что увеличивает массу конструкции. Для того чтобы этого избежать, обшивку связывают дополнительной накладкой (компенсатор) со шпангоутом. Первый способ крепления применяется исключительно в бесстрингерных (обшивочных) фюзеляжах.

К шпангоутам крепится сотовидная обшивка. Она включает сердцевину и две металлические панели. Сотовая конструкция – материал шестиугольного вида, состоящий из металла. В сердцевине находится клей, который позволяет вовсе не использовать заклепки. Эта конструкция способна передавать напряжение по всей поверхности и характеризуется высоким сопротивлением деформации.

Обшивка образует внешнюю поверхность крыла. От качества поверхности крыла в определенной степени зависят его аэродинамические характернее тики. В современном самолетостроении преимущественное распространение получила жесткая металлическая обшивка, как наиболее полно удовлетворяющая требованиям аэродинамики, прочности, жесткости м массы. Металлическая обшивка чаще всего выполняется из листов. Толщина ее колеблется от 0,5 мм в очень мало нагруженных местах у конца крыла до 4…6 мм и даже больше в сильно нагруженных местах в корневых сечениях.

Наибольшее распространение на современных самолетах получила обшивка из высокопрочных алюминиевых сплавов. На самолетах, летающих на больших сверхзвуковых скоростях (М>2), применяется обшивка из жаропрочных сталей и титановых сплавов, не теряющая своих механических свойств при повышенных температурах в условиях аэродинамического нагрева конструкции.

Соединение листов обшивки друг с другом может производиться внахлестку, внахлестку со снятой кромкой, внахлестку с подсечкой и встык. Наиболее простым является соединение внахлестку, но оно вызывает наибольшее аэродинамическое сопротивление. Для уменьшения сопротивления применяют стык внахлестку со снятой кромкой и стык внахлестку с подсечкой.

Последний стык может производиться только для тонких листов толщиной в 0,5…1 мм. Наилучшим в аэродинамическом отношении и получившим по этому наибольшее распространение на современных самолетах является соединение встык, хотя здесь и приходится ставить как минимум двух рядный заклепочный шов, тогда как в других схемах можно обойтись и однорядным швом Рядность шва определяется действующими нагрузками.

Стыки обшивки осуществляются по элементам каркаса: лонжеронам, стрингерам и нервюрам. В настоящее время для крепления обшивки применяется потайная клепка. Отверстия на наружной поверхности зенкуются под закладную головку потайной заклепки. При клепке очень тонких листов толщиной 0,5…0,6 мм отверстия под закладную головку заклепки могут подштамповываться. В этом случае подштамповываются или зенкуются отверстия и в элементах тех деталей, к которым приклепывается такая обшивка.

На современных самолетах широко применяется слоистая обшивка, состоящая из двух несущих слоев, соединенных между собой легким заполнителем. Несущие слои обшивки изготавливаются чаще всего из алюминиевых листов. Заполнитель может быть сотовым, пористым или выполняться из гофрированного листа. Сотовый заполнитель изготавливается из металлической фольги толщиной 0,03…0,02 мм. Ленты фольги гофрируются и соединяются между собой путем склейки, пайки или точечной сварки.

Вид сотов зависит от формы гофра. Сотовый заполнитель может изготавливаться и из гофрированных пластмассовых лент, склеиваемых между, собой. Пористый заполнитель изготавливается из пористых пластмасс, имеющих малую плотность. Обшивка с.заполнителем из гофрированного листа хорошо воспринимает нагрузки, направление которых совпадает с направлением гофра.

Несущие листы-обшивки приклеиваются к заполнителю, а металлические листы могут и припаиваться к металлическому заполнителю. На крыльях сверхзвуковых самолетов, подверженных большому аэродинамическому нагреву, несущие слои обшивки могут изготавливаться из титановых листов или из листов жаропрочной стали, а сотовый заполнитель — из фольги этого же материала.

Слоистая обшивка имеет целый ряд преимуществ в сравнении с однослойной. Слоистая обшивка имеет большую поперечную жесткость, а следовательно, и высокие критические напряжения. Так, при толщине несущего слоя 5/2 = 1 мм и при h = 10 мм, это отношение равно 75, а при h = 20 мм — 300. Примерно в таком же отношении повышается и поперечная жесткость. По этой причине слоистая обшивка не нуждается в частом стрингерном наборе, позволяет значительно уменьшить чисел нервюр.

Крыло со слоистой обшивкой может оказаться легче крыла с однослойной обшивкой, подкрепленной стрингерами. Качество поверхности крыша со слоистой обшивкой из-за отсутствия заклепочных швов получается более высоким. Слоистая обшивка обладает хорошими теплоизоляционными свойствами, что делает выгодным ее применение на подверженных большому аэродинамическому нагреву крыльях сверхзвуковых самолетов, внутренние объемы которые заняты горючим.

Но слоистая обшивка имеет и большие недостатки. Технология изготовления слоистой обшивки сложна, сложен контроль качества склейки или припайки несущих слоев к заполнителю, затруднен ремонт обшивки. Большие трудности встречаются при осуществлении стыков частей слоистой обшивки и стыка ее с элементами силового набора крыла.

В стыке необходимо осуществить соединение не только сильно нагруженных несущих слоев обшивки, но и заполнителя, который обеспечивает совместную их работу. Стык панелей обшивки производится по специальным окантовкам. Окантовка приклеивается или припаивается к несущим слоям обшивки и к заполнителю. Соединение панелей, осуществляется при помощи винтов с анкерными, гайками или болтов.

Стык обшивки с элементами силового набора крыла производится также с использованием окантовок. С целью уменьшения массы слоистой обшивки следует стремиться к сокращению количества стыков. Если из конструктивных и технологических соображений можно изготовлять длинные панели обшивки, превышающие длину, листов, идущих на несущие ее слои, то сначала соединяют накладками несущие слои при помощи склейки или пайки, а затем соединяют их с заполнителем.

В моноблочных крыльях современных скоростных самолетов широкое применение находит обшивка из монолитных панелей. В таком крыле почти все нагрузки воспринимает обшивка и масса ее составляет основную часть массы крыла. Применение монолитной обшивки позволяет снизить массу крыла благодаря соответствию размеров сечений действующим нагрузкам и значительно меньшему, чем в панелях с листовой обшивкой, количеству соединений.

Крылья, выполненные из монолитных панелей, обладают повышенной жесткостью на кручение, что благоприятно с точки зрения аэроупругости. Однако монолитные панели в сравнении со сборными имеют и ряд недостатков: большая трудоемкость изготовления, значительный отход материала, высокая стоимость, трудность ремонта, худшие характеристики усталостной прочности. Монолитные панели изготовляются фрезерованием из плит, прессованием; прокаткой, горячей штамповкой и литьем. Плиты, из которых изготовляются фрезерованием панели, получаются горячей прокаткой или ковкой.

Панели сложной конфигурации фрезеруют на специальных копировально-фрезерных станках и станках с программным управлением. Панели более простой конфигурации можно изготовлять и с помощью химического фрезерования. Криволинейные панели получаются либо фрезерованием плоской панели с последующей гибкой, либо приданием плите необходимой кривизны свободной ковкой с последующим фрезерованием по требуемому контуру.

Прессованием изготовляются панели постоянного сечения параллельным продольным набором. После, термообработки панель подвергается механической обработке, формовке и окончательной доводке по обводу. Прокаткой можно получать и панели вафельного типа. Перед прокаткой заготовку и матрицу нагревают до температуры горячей штамповки.

Дальнейшая обработка панели производится так же, как и обработка прессованной панели. При горячей штамповке панелей продольный и поперечный набор и толщина панели могут иметь переменное по длине сечение, форма поперечного сечения ребер трапециевидная. Так как штамповка не позволяет получить требуемую точность размеров ребер и толщины обшивки, необходима калибровка панелей либо дополнительная механическая обработка.

Изготовление панелей литьем позволяет получить конструкцию со сложным силовым набором и с обшивкой значительно меньшей толщины, чем при других способах получения панелей. Панели, изготовленные литьем, требуют меньшего объема механической обработки. Каждый из способов изготовления панелей имеет свои преимущества и недостатки.

Преимуществами панелей, изготовленных фрезерованием из плит, являются возможность получения панелей сложной конфигурации с переменными сечениями, относительно высокая точность и чистота поверхностей сравнительная простота и дешевизна применяемой оснастки; К недостаткам следует отнести большой отход материала (до-90%).высокую трудоемкость изготовления и худшие по сравнению со штампованными панелями механические свойства. Преимуществами прессованных панелей являются их высокие механические свойства, малый отход материала и меньшая по сравнению с горячей штамповкой мощность оборудования.

Недостатком является ограниченность форм и размеров панелей. К преимуществам панелей, полученных прокаткой, следует отнести возможность получения значительно меньшей, чем у прессованных панелей, толщины обшивки (до 1 мм и даже менее), а в сравнении с горячее штампованными панелями — меньшую мощность оборудования и сравнительную простоту, а следовательно, и меньшую стоимость оснастки. Недостатком горячекатаных панелей является ограниченность геометрических форм в сравнении со штампованными панелями.

Горячее штампованные панели обладают почти такой же высокой прочностью, как и прессованные панели. При штамповке панелей обеспечивается требуемое изменение площади сечения ребер и толщины обшивки, получается малый отход материала. Крупным недостатком этого способа изготовления панелей является большая мощность оборудования.

Так, для изготовления панели из алюминиевых сплавов требуется усилие в 300000 Н на один квадратный метр. Поэтому размеры штампованных панелей ограничены. Большая трудоемкость и длительность цикла изготовления штампов и невозможность получить требуемую точность размеров ребер и толщины обшивки без дополнительной обработки также являются недостатками этого способа изготовления панелей.

Преимущества изготовления панелей литьем состоят в возможности получения больших по размерам панелей с требуемым, силовым набором, тонкой обшивкой и необходимым с точки зрения прочности изменением площади сечений по длине. К достоинствам этого способа изготовления панелей следует отнести также малый отход материала, значительно большую производительность труда и малую трудоемкость изготовления оснастки. Основной недостаток литых панелей — худшие механические характеристики.

0

Фюзеляж самолета состоит из каркаса и обшивки. Существуют фюзеляжи трех типов: ферменные, силовой каркас которых представляет собой пространственную ферму; балочные - их силовой каркас образован продольными и поперечными элементами и работающей обшивкой; смешанные, у которых передняя часть является ферменной, а хвостовая - балочной или наоборот.

Ферменные фюзеляжи. Как было указано выше, силовой частью ферменного фюзеляжа является каркас, представляющий собой пространственную ферму. Стержни фермы работают на расстяжение или сжатие, а обшивка служит лишь для придания фюзеляжу обтекаемой формы. Ферма образована (рис. 50) лонжеронами, расположенными на всей длине или части длины фюзеляжа, стойками и раскосами в вертикальной плоскости, распорками и расчалками в горизонтальной плоскости и диагоналями.

Вместо жестких раскосов и диагоналей широко практикуется установка проволочных или ленточных расчалок.

К каркасу фермы крепятся узлы, которые служат для присоединения к фюзеляжу крыла, оперения, шасси и других частей самолета. Фермы фюзеляжа, как правило, изготовляются сварными из труб и реже клепанными из дюралюминиевых профилей. Обшивка выполняется из полотна, фанеры или листов дюралюминия. Обтекаемую форму ферменному фюзеляжу придают специальные несиловые надстройки - обтекатели, называемые гаргротами.

Основными преимуществами ферменных фюзеляжей перед балочными являются простота изготовления и ремонта, удобство монтажа, осмотра и ремонта оборудования, размещенного в фюзеляже.

К недостаткам относятся несовершенство аэродинамических форм, малая жесткость, малый срок службы, невозможность полностью использовать внутренний объем для размещения грузов. В настоящее время ферменные конструкции применяются редко и в основном для легких самолетов.

Балочные фюзеляжи представляют собой балку обычно овального или круглого сечения, в которой на изгиб и кручение работают подкрепленная обшивка и элементы каркаса. Встречаются три разновидности балочных фюзеляжей: лонжеронно-балочный, стрингерно-балочный (полумонокок), скорлупно-балочный (монокок). Балочные конструкции фюзеляжей выгоднее ферменных, так как силовая часть у них образует обтекаемую поверхность, причем силовые элементы размещаются по периферии, оставляя внутреннюю полость свободной. Это дает возможность получить меньший мидель; жесткая работающая обшивка обеспечивает получение гладкой неискажаемой поверхности, что приводит к уменьшению лобового сопротивления. Балочные фюзеляжи выгоднее и в весовом отношении, так как материал конструкции более удален от нейтральной оси и, следовательно, лучше используется, чем у фюзеляжей ферменной конструкции.

Каркас лонжеронно-балочного фюзеляжа образуют лонжероны, стрингеры и шпангоуты. Каркас обшит дюралюминиевыми листами (обшивкой).

Каркас стрингерно-балочного фюзеляжа (рис. 51) состоит из часто поставленных стрингеров и шпангоутов, к которым

крепится металлическая обшивка большей, чем у лонжеронно-балочных фюзеляжей, толщины.

Скорлупно-балочный фюзеляж (рис. 52) не имеет элементов продольного набора и состоит из толстой обшивки, подкрепленной шпангоутами.

В настоящее время преобладающим типом фюзеляжей является стрингерно-балочный.

Стрингеры - это элементы продольного набора каркаса фюзеляжа, которые связывают между собой элементы поперечного набора - шпангоуты. Стрингеры воспринимают главным образом продольные силы и подкрепляют жесткую обшивку. По конструктивным формам стрингеры фюзеляжа подобны стрингерам крыла. Расстояние между стрингерами зависит от толщины обшивки и колеблется в пределах 80-250 мм. Размеры сечения стрингеров изменяются как по периметру контура, так и по длине фюзеляжа в зависимости от характера и величины нагрузки на каркас фюзеляжа.

Лонжероны - это также элементы продольного набора каркаса фюзеляжа, которые, работая на сжатие-растяжение, воспринимают (частично) моменты, изгибающие фюзеляж. Как видно по задачам и условию работы, лонжероны фюзеляжа подобны стрингерам.

Конструктивное выполнение лонжеронов чрезвычайно разнооб


разно. Они представляют собой гнутые или прессованные профили различных сечений, на самолетах большой грузоподъемности склепываются из нескольких профилей и листовых элементов.

Шпангоуты являются элементами поперечного набора фюзеляжа, они придают фюзеляжу заданную форму поперечного сечения, обеспечивают поперечную жесткость, а также воспринимают местные нагрузки.

В ряде случаев к шпангоутам крепятся перегородки, разделяющие фюзеляж на ряд отсеков и кабин.

Шпангоуты разделяются на нормальные и силовые. Силовые шпангоуты устанавливаются в местах приложения сосредоточенных нагрузок, например в местах крепления крыла к фюзеляжу, стоек шасси, частей оперения и т. п.

Нормальные шпангоуты (рис. 53) собираются из дуг, штампованных из металлического листа. Сечение нормальных шпангоутов чаще всего швеллерное, иногда Z-образное и реже тавровое. Силовые шпангоуты склепываются из отдельных профилей и листовых элементов. Иногда такие шпангоуты выпрессовываются на мощных прессах из алюминиевого сплава.

Расстояние между шпангоутами обычно колеблется в пределах 200-650 мм.

Обшивка выполняется из листов дюралюминия или титана различной толщины (от 0,8 до 3,5 мм) и крепится к элементам каркаса заклепками либо приклеивается. Листы обшивки соединяются между собой по стрингерам и шпангоутам или встык, или внахлест, без подсечки. В последнем случае каждый передний лист перекрывает нижний. Типовое соединение обшивки со стрингерами и шпангоутами показано на рис. 53.

Вырезы в обшивке фюзеляжа балочного типа резко уменьшают прочность конструкции. Поэтому для сохранения необходимой прочности обшивку у вырезов подкрепляют усиленными стрингерами и усиленными шпангоутами. Небольшие вырезы окантовываются кольцами из материала большей толщины, чем обшивка, иногда необходимая жесткость обеспечивается отбортовкой отверстия.

Фюзеляжи самолетов небольших размеров делают, как правило, неразъемными. У более крупных самолетов для упрощения производства, ремонта и эксплуатации фюзеляж расчленяют на несколько частей. Соединение частей фюзеляжа зависит от его конструктивной схемы. Соединение ферменных фюзеляжей производится стыковыми узлами, установленными на лонжеронах,


у балочных фюзеляжей крепление производится по всему контуру разъема.

На рис. 54 показаны типовые технологические разъемы фюзеляжа транспортного самолета. Фюзеляж состоит из трех частей, причем каждая из частей в свою очередь образована панелями, представляющими участки обшивки с элементами продольного набора. Панели, соединяясь со шпангоутами, собираются окончательно в сборочном стапеле. Соединение панелей неразъемное и производится заклепочным швом, отдельные части фюзеляжа соединяются болтами по всему периметру разъема. Стыковка осуществляется через фитинги, прикрепленные к стрингерам фюзеляжа (рис. 55).

Пол в кабинах самолета обычно рассчитывают на максимальную распределенную статическую нагрузку. На пассажирских самолетах эта нагрузка не превышает 500 кГ/м 2 , на грузовых достигает 750 и более кГ/м 2 . Каркас пола состоит из набора продольных и поперечных балок, стрингеров и соединяющих узлов.

Поперечный набор пола состоит из нижних балок шпангоутов. Пояса этих балок изготавливаются из фрезерованных или штампованных профилей. Панели, закрывающие каркас, изготавливают из листов прессованной фанеры толщиной 10-12 мм, из дюралюминиевых листов, усиленных прикрепленными снизу профилями


уголкового и швеллерного сечений или гофром из прессованных листов алюминиевого или магниевого сплава с последующей механической или химической обработкой. Для предупреждения скольжения панели пола имеют рифленую или шероховатую поверхность, а в некоторых случаях покрываются пробковой крошкой. На полу установлены гнезда для крепления пассажирских кресел, а на грузовых самолетах- кольца для крепления перевозимых грузов.


Окна пассажирской кабины делают прямоугольной или круглой формы. Все окна кабины, как правило, имеют двойные органические стекла. Очень часто в герметических кабинах внутреннее стекло является основным работающим стеклом и принимает на себя нагрузку от избыточного давления в кабине. Только в случае разрушения внутреннего стекла наружное стекло начинает воспринимать избыточное давление. Межстекольное пространство через осушительную систему, предотвращающую стекла от запотевания и замерзания, связано с полостью гермокабины. Уплотнение остекления выполняется с помощью мягкой морозоустойчивой резины, иногда - невысыхающей замазкой.

Застекленная часть фюзеляжа, обеспечивающая обзор экипажу, называется фонарем. Форма фонарей, их размещение и размеры выбираются из соображения обеспечения наилучшего обзора и наименьшего сопротивления. На рис. 56 показаны внешний вид фонаря штурмана и внешний вид фонаря кабины экипажа. Угол наклона козырька фонаря принимают равным 50-65° (в зависимости от величины V макс). Лобовые стекла фонаря, как правило, оборудуются электрообогревом для предотвращения их обледенения в полете. Фонарь состоит из каркаса, отлитого или отштампованного из алюминиевого или магниевого сплавов, и стекол. Стекла крепятся к каркасу болтами и прижимаются дюралюминиевой лентой. Герметизация стекол осуществляется резиновой прокладкой, уплотнительной лентой и замазкой (рис. 56, в).

Вырезы под входные двери транспортных самолетов чаще всего располагаются на боковой поверхности фюзеляжей, но в некоторых случаях устанавливаются и в нижней части. Ширина двери обычно не превышает 800 мм, а высота - 1 500 мм. Выбор размеров грузовых дверей (люков) и их размещение производятся с учетом габаритов грузов и минимальной затраты времени на загрузку (разгрузку) самолета. Открываются двери внутрь кабины либо сдвигаются вверх или в сторону. Двери делают обычно в виде клина, основанием которого является внутренняя поверхность створки двери. Избыточное давление в герметизированном фюзеляже прижимает створку двери к ее основанию. В закрытом положении дверь запирается замком. При открытой двери в кабине экипажа загорается сигнальная лампочка.

Вырезы под двери усиливаются установкой в месте выреза более мощных шпангоутов и стрингеров, установкой дополнительной обшивки. Окантовка дверей входит в силовой каркас фюзеляжа. Дверь - металлическая, состоит, как правило, из отштампованной из листового дюралюминия чаши, подкрепленной каркасом. Герметизация дверей осуществляется с помощью резиновых профилей.

Многие современные самолеты летают на больших высотах и для обеспечения нормальной жизнедеятельности людей, находящихся на борту такого самолета, потребовалось создание в кабинах необходимого давления. Кабина самолета, внутри которой в полете поддерживается повышенное (по сравнению с атмосферным) давление воздуха, называется герметической. Герметическая кабина, выполненная в виде обособленного силового агрегата и установленная в фюзеляже без включения ее в силовую схему, называется подвесной. Размеры такой кабины не зависят от размеров и обводов фюзеляжа, и поэтому она может быть выполнена с наивыгоднейшими с точки зрения прочности формами и минимальных размеров. Кабины пассажирских самолетов, как правило, представляют собой герметизированный отсек фюзеляжа и полностью включены в его силовую схему. Подобная кабина работает как сосуд под действием внутреннего давления, а также подвергается изгибу и кручению, как и обычный фюзеляж. По соображениям прочности наилучшей формой сооружения, нагруженного изнутри избыточным давлением, является шар, но в связи с несоответствием формы фюзеляжа и неудобствами размещения в такой кабине экипажа и пассажиров стремятся придать кабине форму цилиндрической оболочки, закрытой по концам сферическими днищами. Переход с цилиндрических стенок на днище по возможности должен быть плавным без переломов. При наличии переломов днище, нагруженное избыточным давлением, сжимает стенки цилиндра в направлении радиусов и тогда в этом месте необходимо ставить усиленный шпангоут. Особенно сильно нужно подкреплять плоские днища.

Для сохранения в кабине избыточного давления необходимо обеспечить ее герметичность. Разумеется, обеспечить полную герметичность кабины очень трудно, поэтому допускается некоторая утечка воздуха из кабины, не снижающая безопасности полета. Критерием герметичности может служить время падения давления с величины рабочего избыточного до значения 0,1 кГ/см 2 . Это время должно быть не менее 25-30 мин.

Герметизация кабин достигается: герметизацией обшивки и остекления люков и дверей, выводов из кабин тяг, тросов, валиков управления самолетом и двигателями, электропроводки, трубопроводов гидросистем и т. п.

Герметизация листов обшивки в месте их соединения и крепления к элементам каркаса фюзеляжа достигается применением многорядных швов, установкой специальных уплотнительных лент, закладываемых между листами обшивки и каркаса. С внутренней стороны кабины заклепочные швы покрываются герметизирующими замазками. Герметизация входных дверей, загрузочных люков, запасных выходов, подвижных частей фонаря, окон (остекления) и т. п. осуществляется резиновыми профилями и прокладками. Применяются следующие способы герметизации: уплотнение типа «нож по резине»; уплотнение резиновой прокладкой, имеющей сечение трубы; уплотнение с помощью пластинчатого клапана; уплотнение резиновой трубкой, надуваемой воздухом.

Люки и двери, открывающиеся внутрь кабины, герметизируются по первым трем указанным способам. При герметизации с помощью пластинчатого клапана полосу из пластинчатой резины укрепляют с внутренней стороны по контуру выреза, тогда избыточное давление прижимает края клапана к люку и тем самым герметизируются щели.

Сложней загерметизировать люки, открывающиеся наружу и имеющие относительно большие размеры, так как внутреннее избыточное давление будет отжимать люк. Такие люки герметизируются чаще всего резиновой трубкой, надуваемой воздухом.

Гермовыводы тяг и тросов управления, электрических проводов и других элементов существуют трех типов: одни из них рассчитаны на обеспечение возвратно-поступательного движения, другие обеспечивают герметизацию вращательного движения, а третьи герметизируют неподвижные детали.

Для обеспечения герметичности тяг с возвратно-поступательным движением часто используют гофрированный резиновый шланг цилиндрической или конической формы либо делают устройство, состоящее из корпуса, отлитого из магниевого сплава с запрессованными бронзовыми втулками, в которых перемещаются стальные тяги. Между тягами и втулками имеются войлочные и резиновые уплотнения. Внутренняя полость корпуса через специальное отверстие забивается консистентной смазкой.

Тросы герметизируются резиновыми пробками, имеющими сквозные отверстия диаметром меньшим, чем диаметр троса, и продольный разрез, позволяющий надевать пробку на трос. Для уменьшения силы трения трос на всей длине его хода покрывается незамерзающей смазкой, содержащей графит. Герметизация деталей, передающих вращательное движение, осуществляется резиновыми уплотнительными кольцами. Герметизация трубопроводов производится с помощью специальных переходников, закрепленных на гермоперегородке. К переходнику с одной и другой стороны при помощи накидных гаек крепятся трубопроводы. Электропроводка герметизируется при помощи специальных электровводов.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Эволюция конструкции фюзеляжа самолёта шла от ранних вариантов деревянной ферменной структуры, через монококовую оболочку к современной полумонококовой оболочке.

Ферменная структура. Главным недостатком ферменной структуры является отсутствие обтекаемой формы. В основе конструкции лежат отрезки трубок, называемые лонжеронами. Сваренные вместе, они формируют хорошо укреплённый каркас. К лонжеронам привариваются вертикальные и горизонтальные кронштейны, из-за которых такая структура приобретает квадратное или прямоугольное сечение. В конструкцию добавляют дополнительные кронштейны, обеспечивающие сопротивление внешнему давлению, которое может возникнуть с любой стороны структуры. Стрингеры и шпангоуты (или вспомогательные нервюры) создают форму фюзеляжа и поддерживают обшивку.

По мере развития технологии, дизайнеры стали закрывать ферменные элементы, чтобы придать фюзеляжу более обтекаемую форму и улучшить его аэродинамические характеристики. Первоначально это делалось с помощью ткани. Впоследствии стали использоваться лёгкие металлы (алюминий). В некоторых случаях, наружная обшивка может принимать на себя всю полётную нагрузку либо значительную её часть. В большинстве современных самолётов используется конструкция с несущей обшивкой, известная как монокок или полумонокок (рис. 2-14).

Монокок. В монококовой конструкции используется несущая обшивка, которая, подобно стенке алюминиевой банки, принимает на себя почти всю нагрузку. Являясь достаточно жёсткой, такая конструкция не очень хорошо реагирует на деформацию своей поверхности. К примеру, алюминиевая банка может выдерживать значи-тельную нагрузку, если эта нагрузка приходится на края. Но если боковая поверхность банки хотя бы немного деформирована, даже незначительное давление способно раздавить банку.

В силу того, что большая часть изгибающей нагрузки приходится на наружную обшивку, а не на открытый ферменный каркас, исчезает необходимость во вну-треннем укреплении структуры. Это позволяет снизить её вес и увеличить внутреннее пространство.Один из оригинальных методов использования монокока был впервые предложен американским инженером Джеком Нортропом. В 1918 году он разработал новый способ изготовления монококового фюзеляжа, который впоследствии был применён при создании самолёта «Локхид S-1 Рейсер». Конструкция состояла из двух фанерных половинок оболочки, которые наклеивались на деревянные обручи-стрингеры. Для того, чтобы получить половинки, конструктор использовал три больших куска еловой фанеры, которые размачивались в клее и укладывались в полукруглую бетонную пресс-форму, напоминающую ванну. Затем форма накрывалась плотно прилегающей крышкой, и внутри её надувался резиновый шар, который прижимал фанеру к поверхности формы. Спустя сутки гладкая и ровная половинка оболочки была готова. Обе половинки имели толщину не более 6 миллиметров.

Из-за сложностей при промышленном производстве монокок получил распространение лишь несколько десятилетий спустя. Сегодня монококовая конструкция широко используется в автомобильной промышленности, где несущий кузов фактически является индустриальным стандартом.

Полумонокок. В полумонококовой конструкции (частичной или по-ловинной) используется дополнительная структура, к которой прикрепляется обшивка самолёта. Состоящая из шпангоутов и/или нервюр различных размеров, а также стрингеров, эта структура усиливает несущую обшивку, частично снимая с фюзеляжа изгибающую нагрузку. На главной секции фюзеляжа также располагаются места крепления крыльев и теплозащитный кожух.

На одномоторных самолётах двигатель обычно крепится в передней части фюзеляжа. Между задней стенкой двигателя и кабиной пилота устанавливается огнеупорная перегородка, служащая для защиты пилота и пассажиров в случае внезапного пожара в двигателе. Обычно она изготавливается из термостойкого материала (например, нержавеющая сталь). Однако в последнее время в конструкции самолётов всё чаще применяются композитные материалы. Некоторые самолёты полностью изготавливаются из них.

Композитная конструкция. История. Использование композитных материалов в конструк-ции самолётов началось во время Второй мировой войны. Именно тогда при производстве фюзеляжей стратегических бомбардировщиков «В-29» стали ис-пользовать стекловолокно. В конце 50-х годов этот ма-териал начал широко применяться при изготовлении планёров. В 1965 году был сертифицирован первый летательный аппарат, полностью изготовленный из стекловолокна. Это был планёр «Диамант HBV» швей-царского производства. Четыре года спустя в США был сертифицирован полностью стеклопластиковый четы-рёхместный одномоторный самолёт «Уиндекер Игл». В настоящее время более трети всех самолётов в мире производятся из композитных материалов.

Композитный материал — широкое понятие. К таким материалам относятся стекловолокно, углепластик, пуленепробиваемое волокно «Кевлар», а также их со-четания. Композитная конструкция имеет два важных преимущества: чрезвычайно гладкая поверхность и возможность изготовления сложных изогнутых или обтекаемых структур (рис. 2-15).

Самолёты из композитных материалов. Композитный материал — это искусственно созданный неоднородный материал, состоящий из наполнителя и армирующих элементов (волокон). Наполнитель вы-ступает в качестве своеобразного «клея», скрепляя - волокна и (при вулканизации) придавая изделию форму, а волокна принимают на себя основную часть нагрузки.

Существует множество различных типов волокон и наполнителей. При изготовлении ЛА чаще всего ис-пользуется эпоксидная смола, являющаяся разновид-ностью термореактивной пластмассы. По сравнении с другими аналогичными материалами (такими как полиэфирная смола), эпоксидная смола значительно прочнее. Кроме того, она лучше выдерживает высокие температуры. Есть много вариантов эпоксидных смол которые различаются характеристиками, временем и температурой вулканизации, а также стоимостью.

В качестве армирующих волокон при производстве ЛА чаще всего используются стекловолокно и углеродное волокно. Стекловолокно обладает хорошей прочностью на разрыв и сжатие, высокой стойкостью к ударным нагрузкам. Это простой в работе, относительно недорогой и широко распространенный материал. Его основным недостатком является достаточно большой вес. Из-за этого из стекловолокна сложно изготовить несущий корпус, который по лёгкости мог бы соперничать с аналогичным алюминиевым.

Углеродное волокно в целом прочнее на разрыв и сжатие, чем стекловолокно, и гораздо более жёсткое на изгиб. Оно также существенно легче, чем стекловолокно. Однако его стойкость к ударным нагрузкам несколько ниже, волокна достаточно хрупкие и при резком ударе - ломаются. Эти характеристики существенно улучшены в такой разновидности углеродного волокна, как «усиленная» эпоксидная смола, которая используется при изготовлении горизонтальных и вертикальных стабилизаторов лайнера «Боинг 787».

Углеродное волокно имеет более высокую стоимость чем стекловолокно. Цены несколько упали после внедрения инноваций, появившихся в ходе разработок бомбардировщика «В-2» (в 80-е годы прошлого века и лайнера «Боинг 777» (в 90-е годы). Хорошо сконструированные структуры из углеродного волокна могут быть значительно легче, чем аналогичные алюминиевые, — иногда более, чем на 30%.

Преимущества композитных материалов. Композитные материалы имеют несколько существенных преимуществ перед металлами, деревом или тканью. Чаще всего в качестве основного преимущества называют меньший вес. Однако следует понимать, что корпус самолёта, изготовленный из композитного материала, не обязательно будет легче металлического. Это зависит от характеристик корпуса, равно как и от используемого материала.

Более важным преимуществом является возможность создания при использовании композитных материалов очень гладкой и сложно искривлённой аэродинамической поверхности, которая позволяет существенно снизить сопротивление воздуха. Именно в силу этой причины в 60-е годы прошлого века дизайнеры планёров переключились с металла и дерева на композитные материалы.

Композитные материалы широко используются такими производителями самолётов, как «Циррус» и «Коламбия». Благодаря снижению сопротивления воздуха, самолёты этих компаний отличаются высокими лётными характеристиками, несмотря на наличие неубирающегося шасси. Композитные материалы также помогают маскировать радарные сигнатуры при дизайне типа «стелс» (в таких самолётах, как стратегический бомбардировщик «В-2» и многоцелевой истребитель «F-22»). Сегодня композитные материалы используются при производстве любых летательных аппаратов - от планёров до вертолётов.

Третьим преимуществом композитных материалов является отсутствие коррозии. Так, фюзеляж лайнера «Боинг 787» полностью изготавливается из композитных материалов, что позволяет этому самолёту выдерживать больший перепад давлений и большую влажность в кабине, чем это допускали лайнеры предыдущих поколений. Инженеров больше не заботит проблема коррозии из-за конденсации влаги на скрытых частях обшивки фюзеляжа (например, под изоляционным покрытием). В результате, долговременные эксплуатационные расходы авиакомпаний могут быть существенно снижены.

Ещё одним преимуществом композитных материалов является хорошие эксплуатационные качества в изгибающей среде (например, при использовании в лопастях несущего винта вертолётов). В отличие от большинства металлов, композитные материалы не страдают от усталости металлов и трещинообразова-ния. При правильном конструировании лопасти несущего винта, выполненные из композитного материала, имеют существенно более высокое нормативное время эксплуатации, чем металлические. В силу этого большинство современных больших вертолётов имеют полностью композитные лопасти, а иногда и композитную втулку несущего винта.

Недостатки композитных материалов. Композитные конструкции имеют свои недостатки, к самым важным из которых относится отсутствие визуальных следов повреждения. Композитные материалы реагируют на удар иначе, чем другие материалы, и зачастую повреждения не заметны при внешнем осмотре.

Например, если автомобиль врежется в алюминиевый фюзеляж, на фюзеляже останется вмятина. Если вмятины нет, нет и повреждения. Если вмятина присутствует, повреждение определяется визуально и производится ремонт. В композитных структурах удар малой силы (например, при столкновении или падении инструмента) часто не оставляет видимых следов повреждения на поверхности. При этом в зоне удара может возникнуть широкая зона расслоения, которая распространяется воронкообразно от точки удара. Повреждения на задней поверхности структуры могут быть существенными — и при этом совершенно неви-димыми. Как только возникают причины предполагать, что произошёл удар (даже незначительной силы), появляется необходимость в приглашении специалиста для инспекции структуры и поиска внутренних повреждений. Хорошим признаком расслоения волоконной структуры при использовании стекловолокна является появление «белёсых» областей на поверхности корпуса.

Удар средней силы (например, при столкновении с автомобилем) приводит к локальным повреждениям поверхности, что видимо невооружённым глазом. Зона разрушения больше, чем повреждения на поверхности, и требует ремонта. Удар высокой силы (например, удар птицы или градины в корпус самолёта во время полёта), приводит к появлению пробоины и значительному повреждению структуры. В случае ударов средней и высокой силы повреждения видимы глазом, но удар слабой силы трудно определить визуально (рис. 2-16).

Если удар вызвал расслоение, разрушение поверхности или пробоину, в обязательном порядке необходимо проведение ремонта. В ожидании ремонта повреждённая область должна быть накрыта и защищена от дождя. Детали, изготовленные из композитного материала, часто представляют собой тонкую оболочку, под которой находится пористый внутренний слой (так называемая «сандвичевая» конструкция). Превосходная с точки зрения структурной жёсткости, такая структура подвержена проникновению влаги, что позже может привести к серьёзным проблемам. Наклеивание поверх пробоины отрезка специальной «изоляционной ленты» является хорошим способом временной защиты от воды, но это нельзя назвать структурным ремонтом. Таким ремонтом не является и использование пасты для заполнения отверстий, хотя этот метод можно применять в косметических целях.

Ещё одним недостатком композитных материалов является относительно низкая термостойкость. В то время как температурные пределы использования варьируются у различных смол, большинство из них начинают терять прочность при температурах выше 65° С. Для снижения температурного воздействия часто применяется окрашивание композитного корпуса в белый цвет. Например, нижняя поверхность крыла, окрашенная в чёрный цвет и располагающаяся над горячим асфальтовым покрытием в солнечный день, может нагреваться более чем до 100° С. Та же конструкция, окрашенная в белый цвет, редко разогревается более чем до 60° С.

Производители композитных самолётов часто дают конкретные рекомендации по допустимым цветам окраски корпуса. При повторной окраске самолёта необходимо точно следовать этим рекомендациям.

Причиной тепловых повреждений часто может являться пожар на борту. Даже быстро потушенное возго-рание в тормозной системе может повредить нижнюю обшивку крыльев, стойки или колёса шасси. Композитные материалы также легко повреждаются различными растворителями, поэтому такими химикатами композитные структуры обрабатывать нельзя. Для удаления краски с композитных деталей используются только механические методы, например, обдув металлическим порошком или пескоструйная обработка. Случаи повреждения дорогостоящих композитных деталей растворителями относительно нередки, и такие повреждения обычно не подлежат ремонту.

Утечка жидкости на композитные конструкции. Иногда высказываются опасения по поводу попада-ния на композитные конструкции топлива, масла или гидравлической жидкости. Следует сказать, что при использовании современных эпоксидных смол это обычно не является проблемой. Как правило, если вытекающая жидкость не разъедает краску, она не может повредить и композитный материал под ней. Например, в некоторых самолётах используются топливные баки из стекловолокна, в которых топливо соприкасается с композитной поверхностью напрямую без использования герметика. Некоторые недорогие виды полиэфирной смолы могут быть повреждены при попадании на них смеси автомобильного бензина с этиловым спиртом. Более дорогостоящие смолы, как и эпоксидная смола, могут безопасно соприкасаться с автомобильным бензином, а также с авиационным бензином (октановое число 100) и реактивным топливом.

Защита от удара молнии. Важным фактором при проектировании ЛА является защита от удара молнии. При ударе молнии в ЛА его конструкция испытывает воздействие огромной мощности. Вне зависимости от того, управляете ли вы самолётом общего назначения или большим авиалайнером, основные принципы защиты от удара молнии остаются одинаковыми. Безотносительно к размеру самолёта, энергия от удара должна распределяться по большой площади поверхности — это позволяет уменьшить силу тока, приходящуюся на единицу площади обшивки, до приемлемого уровня.

При ударе молнии в самолёт, изготовленный из алюминия (в силу его электропроводности), электрическая энергия естественным образом распределяется по всей алюминиевой конструкции. В данном случае основной задачей конструкторов является защита электронного оборудования, топливной системы и т.д. Внешняя обшивка самолёта должна предоставлять путь наименьшего сопротивления для электрического разряда.

В случае самолёта, изготовленного из композитных материалов, ситуация иная. Стекловолокно является прекрасным электроизолятором. Углеродное волокно проводит электричество, однако не так хорошо, как алюминий. Следовательно, внешний слой композитной обшивки должен обладать дополнительной электро-проводностью. Это обычно достигается с помощью металлической сетки, вмонтированной в обшивку. Чаще всего используются алюминиевые или медные сетки — алюминий для стекловолокна, медь для углеродного волокна. Любой структурный ремонт поверхностей, защищённых от удара молнии, должен включать в себя восстановление металлической сетки.

В том случае, если конструкция композитного самолёта предполагает наличие внутренней радиоантенны, в молниезащитной сетке должны быть оставлены специальные «окна». Внутренние радиоантенны иногда используются в композитных самолётах, поскольку стекловолокно прозрачно для радиоволн (в то время как углеродное волокно — нет).

Будущее композитных материалов. В течение нескольких десятилетий после окончания Второй мировой войны композитные материалы заняли важное место в авиационной промышленности. Благодаря своей универсальности и сопротивляемости коррозии, а также хорошему соотношению прочности и веса изделия, композитные материалы позволяют реализовать самые дерзкие и инновационные дизайнерские идеи. Использующиеся в самых различных самолётах — от лёгкого моноплана «Циррус SR-20» до авиалайнера «Боинг 787» — композитные материалы играют в авиаиндустрии значительную роль, и их применение будет только расширяться (рис. 2-17).

Монокок

Моноко́к

(фр. monocoque) тип корпуса, конструкции самолета, характеризующийся жесткой обшивкой, подкрепленной поперечными и продольными наборами - каркасом.

Новый словарь иностранных слов.- by EdwART, , 2009 .

Монокок

[фр. monocoque ] – одна из основных частей конструкции самолёта – хорошо обтекаемая пустотелая балка с жёсткой деревянной или металлический обшивкой, к которой крепятся крылья, хвостовое оперение, двигатель, шасси и др.

Большой словарь иностранных слов.- Издательство «ИДДК» , 2007 .

Монокок

а, м. (фр. monocoque греч. mоnоs один + фр. coque корпус).
ав. Тип корпуса самолета, характеризующийся жесткой обшивкой с использованием поперечных и продольных крепежных элементов, образующих каркас.

Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык , 1998 .


Синонимы :

Смотреть что такое "монокок" в других словарях:

    монокок - а, м. monocoque adj. Монокок. Тип самолет, который представляют собой монолитную (цельную), составляющую как бы одно целое скорлупу, склеенную из полос фанеры в виде сигары. 1925. Вейгелин Сл. авиа. Что такое фюзеляж типа монокок? Фюзеляж (корпус … Исторический словарь галлицизмов русского языка

    - (английский, французкий monocoque, от греческого monos один, единый и французский coque, буквально скорлупа, оболочка) конструкция фюзеляжа или его хвостовой балки, мотогондолы и т. п. круглого, овального или другого сечения, состоящая из толстой … Энциклопедия техники

    Сущ., кол во синонимов: 1 балка (55) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    LFG Roland C.II, Германия, 1916 один из первых самолётов с фюзеляжем монокок в чистом виде … Википедия

    монокок - монок ок, а (авиа) … Русский орфографический словарь

    монокок - (2 м); мн. моноко/ки, Р. моноко/ков … Орфографический словарь русского языка

Loading...Loading...