Мощность котельной – параметр надежной работы

3.3. Выбор типа и мощности котлов

Число работающих котельных агрегатов по режимам отопительного периода зависит от требуемой тепловой мощности котельной. Максимальная экономичность работы котельного агрегата достигается при номинальной нагрузке. Поэтому мощность и количество котлов нужно выбирать так, чтобы в различных режимах отопительного периода они имели нагрузки, близкие к номинальным .

Число котельных агрегатов, находящихся в работе, определяется по относительной величине допустимого снижения тепловой мощности котельной в режиме наиболее холодного месяца отопительного периода при выходе из строя одного из котельных агрегатов

, (3.5)

где – минимально допустимая мощность котельной в режиме наиболее холодного месяца; – максимальная (расчетная) тепловая мощность котельной, z – число котлов. Число устанавливаемых котлов определяется из условия , откуда

Резервные котлы устанавливают только при особых требованиях к надежности теплоснабжения. В паровых и водогрейных котельных, как правило, устанавливают 3–4 котла, что соответствует и . Следует устанавливать однотипные котлы одинаковой мощности.

3.4. Характеристики котельных агрегатов

Паровые котельные агрегаты по производительности разделяются на три группы – малой мощности (4…25 т/ч), средней мощности (35…75 т/ч), большой мощности (100…160 т/ч).

По давлению пара котельные агрегаты можно разделить на две группы – низкого давления (1,4…2,4 МПа), среднего давления 4,0 МПа.

К паровым котлам низкого давления и малой мощности относятся котлы ДКВР, КЕ, ДЕ. Паровые котлы вырабатывают насыщенный или слабо перегретый пар. Новые паровые котлы КЕ и ДЕ низкого давления имеют производительность 2,5…25 т/ч. Котлы серии КЕ предназначены для сжигания твердого топлива. Основные характеристики котлов серии КЕ приведены в таблице 3.1.

Таблица 3.1

Основные расчетные характеристики котлов КЕ-14С

Котлы серии КЕ могут устойчиво работать в диапазоне от 25 до 100 % номинальной мощности. Котлы серии ДЕ предназначены для сжигания жидкого и газообразного топлива. Основные характеристики котлов серии ДЕ приведены в таблице 3.2.

Таблица 3.2

Основные характеристики котлов серии ДЕ-14ГМ

Котлы серии ДЕ вырабатывают насыщенный (t =194 0 С) или слабо перегретый пар (t =225 0 С).

Водогрейные котельные агрегаты обеспечивают температурный график работы систем теплоснабжения 150/70 0 С. Выпускаются водогрейные котлы марок ПТВМ, КВ-ГМ, КВ-ТС, КВ-ТК. Обозначение ГМ означает газомазутный, ТС – твердое топливо со слоевым сжиганием, ТК – твердое топливо с камерным сжиганием. Водогрейные котлы подразделяются на три группы: малой мощности до 11,6 МВт (10 Гкал/ч), средней мощности 23,2 и 34,8 МВт (20 и 30 Гкал/ч), большой мощности 58, 116 и 209 МВт (50, 100 и 180 Гкал/ч). Основные характеристики котлов КВ-ГМ приведены в таблице 3.3 (первое число в графе температура газов – температура при сжигании газа, второе – при сжигании мазута).

Таблица 3.3

Основные характеристики котлов КВ-ГМ

Характеристика КВ-ГМ-4 КВ-ГМ-6,5 КВ-ГМ-10 КВ-ГМ-20 КВ-ГМ-30 КВ-ГМ-50 КВ-ГМ-100
Мощность, МВт 4,6 7,5 11,6 23,2
Температура воды, 0 С 150/70 150/70 150/70 150/70 150/70 150/70 150/70
Температура газов, 0 С 150/245 153/245 185/230 190/242 160/250 140/180 140/180

С целью уменьшения количества устанавливаемых котлов в пароводогрейной котельной созданы унифицированные пароводогрейные котлы, которые могут вырабатывать либо один вид теплоносителя – пар или горячую воду, либо два вида – и пар, и горячую воду. На основе котла ПТВМ-30 разработан котел КВП-30/8 производительностью 30 Гкал/ч по воде и 8 т/ч по пару. При работе в пароводогрейном режиме в котле формируются два самостоятельных контура – паровой и водогрейный. При различных включениях поверхностей нагрева может меняться тепло- и паропроизводительность при неизменной суммарной мощности котла. Недостатком пароводяных котлов является невозможность регулирования одновременно нагрузки и по пару, и по горячей воде. Как правило, регулируется работа котла по отпуску теплоты с водой. При этом паропроизводительность котла определяется его характеристикой. Возможно появление режимов с избытком или недостатком паропроизводительности. Для использования избытков пара на линии сетевой воды обязательна установка пароводяного теплообменника.

Котельные могут отличаться по поставленным перед ними задачам. Есть теплоисточники, которые направлены только на обеспечение теплом объектов, есть водогрейные, а есть смешанные, вырабатывающие одновременно тепло и горячую воду. Поскольку объекты, обслуживаемые котельной, могут быть разных размеров и потребления, то при строительстве следует особо тщательно подойти к расчету мощности.

Мощность котельной – сумма нагрузок

Чтобы верно определить какой мощности котел следует покупать, нужно учесть ряд параметров. Среди них характеристика подключаемого объекта, его нужды и потребность в резерве. Детально мощность котельной складывается из следующих величин:

  • Обогрев помещений. Традиционно берется исходя из площади. Однако следует учитывать также тепловые потери и закладывать в расчет мощность на их компенсацию;
  • Технологический запас. В этот пункт входит обогрев самой котельной. Для стабильной работы оборудования необходим определенный тепловой режим. Он указывается в паспорте к оборудованию;
  • Горячее водоснабжение;
  • Запас. Есть ли в планах увеличение отапливаемой площади;
  • Прочие потребности. Планируется ли подключение к котельной хозяйственных построек, бассейнов и прочих помещений.

Зачастую при строительстве рекомендуют закладывать мощность котельной исходя из пропорции 10 кВт мощности на 100 метров квадратных. Однако на деле рассчитать пропорцию куда сложнее. Нужно учесть такие факторы, как «простои» оборудования в сезон непиковых нагрузок, возможные колебания потребления горячей воды, а также проверить насколько целесообразно компенсировать теплопотери здания мощностью котельной. Зачастую экономически выгоднее устранить их другими средствами. Исходя из вышесказанного, становится очевидно, что расчет мощности рациональнее доверять специалистам. Это поможет сохранить не только время, но и деньги.

Данная котельная предназначена для обеспечения теплотой систем отопления, вентиляции, горячего водоснабжения и для технологического теплоснабжения. По виду энергоносителя и схеме его подачи потребителю КУ относится к отпускающим пар с возвратом конденсата и горячую воду по закрытой схеме теплоснабжения.

Тепловая мощность КУ определяется суммой часовых расходов теплоты на отопление и вентиляцию при максимально-зимнем режиме, максимально-часовых расходов теплоты на технологические цели и максимально-часовых расходов теплоты на горячее водоснабжение (при закрытых системах тепловых сетей).

Рабочая мощность КУ - суммарная мощность работающих котлоагрегатов при фактической нагрузке в данный период времени. Рабочая мощность определяется исходя из суммы тепловой нагрузки потребителей и тепловой энергии, используемой на собственные нужды котельной. В расчётах также учитываем потери теплоты в пароводяном цикле котельной установки и тепловых сетях.

Определение максимальной производительности котельной установки и количества установленных котлов

Q ку У = Q ov +Q гвс +Q tex +Q ch +ДQ ,Вт (1)

где Q ov , Q гвс, Qтех- расходы теплоты соответственно на отопление и вентиляцию, горячее водоснабжение и на технологические нужды, Вт (по заданию); Qch - расход теплоты на собственные нужды котельной установки, Вт; ДQ - потери в цикле котельной установки и в тепловых сетях (принимаем в размере 3% от суммарной тепловой мощности КУ).

Q гв = 1,5 МВт;

Q гвс = 4,17*(55-15)/(55-5)= 3,34 МВт

Расход теплоты на технологические нужды определяем по формуле:

Qtex =Дtex · (h ПАР -h ХВ), МВт (2)

где Д тех = 10 т/ч = 2,77 кг/с - расход пара на технологию (по заданию); h nap = 2,789 МДж/кг -энтальпия насыщенного пара при давлении 1,4 МПа; h XB = 20,93 кДж/кг = 0,021 МДж/кг - энтальпия холодной (исходной) воды.

Qtex = 2,77 · (2,789 - 0,021) = 7,68 МВт

Тепловая мощность, потребляемая КУ на собственные нужды, зависит от её типа и вида топлива, а также от типа системы теплоснабжения. Она расходуется на подогрев воды перед установкой для её химической очистки, деаэрацию воды, подогрев мазута, обдувку и очистку поверхностей нагрева и др. Принимаем в пределах 10-15 % от внешнего суммарного расхода теплоты на отопление, вентиляцию, ГВС и технологические нужды.

Q cн = 0,15*(4,17+3,34+7,68)= 2,27 МВт

ДQ = 0,03*15,19 = 0,45 МВт

Q ку У = 4,17+3,34+7,68+2,27 +0,45 =18 Вт

Тогда тепловая мощность КУ для трёх режимов работы котельной составит:

1) максимально-зимний:

Q ку м.з = 1,13(Q ОV + Q гвс + Q тex) ;МВт (3)

Q ку м.з = 1,13(4,17+3,34 +7,68) = 17,165 МВт

2) наиболее холодный месяц:

Q ку н.х.м = Q ку м.з *(18-t нв)/(18-t но) ,МВт (4)

Q ку н.х.м =17,165*(18+17)/(18+31)=11,78 МВт

где t но = -31°C - расчетная температура для проектирования отопления - наиболее холодной пятидневки (Коб = 0,92) ; t нв = - 17°С - расчётная температура для проектирования вентиляции - в холодный период года (параметры А) .

Выбор количества КА .

Предварительно количество КА для максимально зимнего периода можно определить по формуле:

Находим по формуле:

Q ка =2,7 (2,789-0,4187)+0,01 5 2,7 (0,826-0,4187)=6,6 МВт

ближайший КА ДКВр-6,5-13

При принятии окончательного решения о количестве КА необходимо выполнить условия:

  • 1)количество КА должно быть не менее 2
  • 2)в случае выхода из строя одного из котлов, оставшиеся в работе должны обеспечить тепловую мощность наиболее холодного месяца
  • 3)необходимо предусмотреть возможность осуществления ремонта КА в летний период (как минимум один котел)

Количество КА для наиболее холодного периода: Q ку н.х.м / Q ка =11,78/6,6=1,78=2 КА

Количество КА для летнего периода:1,13(Q гвс + Qtex)/ Q ка =1,13(3,34+7,68)=1,88=2 КА.

Cтраница 1


Мощность котельных установок следует принимать из расчета беспростойного слива цистерн с наиболее вязкими нефтепродуктами, принимаемыми нефтебазой в зимнее время года, и бесперебойного отпуска вязких нефтепродуктов потребителям.  

При определении мощности котельных установок нефтебазы или нефтеперекачивающих станций, как правило, устанавливают Потребный расход теплоты (пара) во времени. Тепловая мощность, расходуемая потребителем в данный момент времени, называется тепловой нагрузкой котельных установок. Эта мощность изменяется в течение года, а иногда и суток. Графическое изображение изменения тепловой нагрузки во времени называется графиком тепловой нагрузки. Площадь графика нагрузки показывает в соответствующем масштабе количество энергии, потребляемой (вырабатываемой) за определенный промежуток времени. Чем равномернее график тепловой нагрузки, тем равномернее нагрузка котельных установок, тем лучше используется установленная мощность. Годовой график тепловой нагрузки имеет ярко выраженный сезонный характер. По максимальной тепловой нагрузке подбирают число, тип и мощность отдельных котельных агрегатов.  

На крупных перевалочных нефтебазах мощность котельных установок может достигать 100 т / ч и более. На небольших нефтебазах широко применяют вертикально-цилиндрические котлы типов Ш, ШС, ВГД, ММЗ и другие, а на нефтебазах с более значительным потреблением пара - вертикально-водотрубные двухбарабанные котлы типа ДКВР.  

На основании максимального расхода тепла или пара устанавливается мощность котельной установки, а исходя из величины колебаний нагрузки устанавливается потребное количество котельных агрегатов.  

В зависимости от вида теплоносителя и масштабов теплоснабжения выбирается тип котлов и мощность котельной установки. Отопительные котельные, как правило, оборудуются водогрейными котлами и по характеру обслуживания потребителей делятся на три типа: местные (домовые или групповые), квартальные и районные.  

В зависимости от вида теплоносителя и масштабов теплоснабжения выбирают тип котлов и мощность котельной установки.  

В зависимости от вида теплоносителя и масштабов теплоснабжения выбирают тип котлов и мощность котельной установки. Отопительные котельные, как правило, оборудуются водогрейными котлами и по характеру обслуживания потребителей делятся на три типа: местные (домовые или групповые), квартальные и районные.  

Структура удельных капитальных вложений связана с мощностью установки следующей зависимостью: с увеличением мощности установки снижаются абсолкм-яая и относительная величины удельных затрат на строительные работы и возрастает доля затрат на оборудование и его монтаж. При этом удельные капитальные затраты в целом с ростом мощности котельной установки и укрупнением единичной мощности котлоагрегатов снижаются.  

Очевидно, применение цепных решеток обратного хода к небольшим котлам себя оправдывает. Первоначальные более высокие затраты на приобретение топочного оборудования окупаются такими преимуществами, как полная механизация процесса горения, повышение мощности котельной установки, возможность сжигать более низкосортные угли и улучшение экономических показателей сжигания.  

Недостаточная надежность средств автоматизации, их высокая стоимость делают в настоящее время нецелесообразной полную автоматизацию котельных. Следствием этого являются необходимость участия человека-оператора в управлении котельными установками, координирование им работы котлоагрегатов и котельно-вспомогателыюго оборудования. По мере увеличения мощности котельных установок растет их оснащенность средствами автоматизации. Рост количества приборов и аппаратов на щитах и пультах вызывает увеличение протяженности щитов (пультов) и как следствие этого ухудшение условий труда операторов из-за потери обозримости аппаратуры контроля и управления. Из-за чрезмерной протяженности щитов и пультов затрудняется поиск оператором необходимых ему приборов и аппаратов. Из сказанного очевидна задача уменьшения протяженности щитов (пультов) управления путем представления оператору информации о состоянии и тенденциях процесса в наиболее компактной и понятной форме.  

Нормативны удельных выбросов в атмосферу твердых частиц для котельных установок, использующих твердое топливо всех видов.  

Нормирование выбросов для действующих на ТЭС котлов в настоящее время является более гибким. Например, не вводятся новые нормативы для тех котлов, которые в ближайшие годы будут выводиться из эксплуатации. Для остальных котлов нормативы удельных выбросов установлены с учетом лучших экологических показателей, достигнутых в эксплуатации, а также с учетом мощности котельных установок, сжигаемого топлива, возможностей размещения нового и показателей имеющегося пыле -, газоочистного оборудования, дорабатывающего свой ресурс. При разработке нормативов для действующих ТЭС также учитывают особенности энергосистем и регионов.  

В продуктах сгорания серосодержащих топлив находится большое количество серного ангидрида, который концентрируется с образованием серной кислоты на трубах поверхности нагрева воздухоподогревателя, находящихся в зоне температур ниже точки росы. Сернокислотная коррозия быстро разъедает металл трубок. Очаги коррозии, как правило, являются также центрами образования плотных золо-вых отложений. При этом воздухоподогреватель перестает быть герметичным, возникают большие перетоки воздуха в газовый тракт, золовые отложения полностью перекрывают значительную часть живого сечения прохода тазов, тягодут ьевые машины работают с перегрузкой, тепловая эффективность воздухоподогревателя резко уменьшается, возрастает температура уходящих газов, что вызывает снижение мощности котельной установки и уменьшение экономичности ее работы.  

Страницы:      1

Основа любого отопления — котел. От того, насколько верно подобраны его параметры зависит будет ли тепло в доме. А чтобы параметры были верными необходимо расчет мощности котла. Это не самые сложные вычисления — на уровне третьего класса, нужен будет только калькулятор и некоторые данные по вашем владениям. Со всем справитесь сами, своими руками.

Общие моменты

Чтобы в доме было тепло, система отопления должна восполнять все имеющиеся потери тепла в полном объеме. Тепло уходит через стены, окна, пол, крышу. То есть, при расчете мощности котла, необходимо учитывать степень утепления всех этих частей квартиры или дома. При серьезном подходе у специалистов заказывают расчет теплопотерь здания, а по результатам уже подбирают котел и все остальные параметры системы отопления. Задача эта не сказать что очень сложная, но требуется учесть из чего сделаны стены, пол, потолок, их толщину и степень утепления. Также учитывают какие стоят окна и двери, есть ли система приточной вентиляции и какова ее производительность. В общем, длительный процесс.

Есть второй способ определить теплопотери. Можно по факту определить количество тепла, которое теряет дом/помещение при помощи тепловизора. Это небольшой прибор, который на экране отображает фактическую картину теплопотерь. Заодно можно увидеть где отток тепла больше и принять меры по устранению утечек.

Определение фактических теплопотерь — более легкий способ

Теперь о том, стоит ли брать котел с запасом по мощности. Вообще, постоянная работа оборудования на грани возможностей негативно сказывается на сроке его службы. Потому желательно иметь запас по производительности. Небольшой, порядка 15-20% от расчетной величины. Его вполне достаточно для того, чтобы оборудование работало не на пределе своих возможностей.

Слишком большой запас невыгоден экономически: чем мощнее оборудование, тем дороже оно стоит. Причем разница в цене солидная. Так что, если вы не рассматриваете возможность увеличения отапливаемой площади, котел с большим запасом мощности брать не стоит.

Расчет мощности котла по площади

Это самый простой способ подобрать котел отопления по мощности. При анализе многих готовых расчетов была выведена средняя цифра: на отопление 10 квадратных метров площади требуется 1 кВт тепла. Эта закономерность справедлива для помещений с высотой потолка в 2,5-2,7 м и средним утеплением. Если ваш дом или квартира подходят под эти параметры, зная площадь вашего дома, вы легко определяете приблизительную производительность котла.

Чтобы было понятнее, приведем пример расчета мощности котла отопления по площади. Имеется одноэтажный дом 12*14 м. Находим его площадь. Для этого умножаем его длину и ширину: 12 м * 14 м = 168 кв.м. По методике, делим площадь на 10 и получаем требуемое количество киловатт: 168 / 10 = 16,8 кВт. Для удобства использования цифру можно округлить: требуемая мощность котла отопления 17 кВт.

Учет высоты потолков

Но в частных домах потолки могут быть выше. Если разница составляет всего 10-15 см, ее можно не учитывать, но если высота потолков более чем 2,9 м, придется делать перерасчет. Для этого находит поправочный коэффициент (поделив фактическую высоту на стандартную 2,6 м) и на него умножают найденную цифру.

Пример поправки на высоту потолков . В здании высота потолков — 3,2 метра. Требуется пересчитать мощность котла отопления для данных условий (параметры дома те же, что в первом примере):


Как видите, разница вполне приличная. Если ее не учесть, нет гарантии, что в доме будет тепло даже при средних зимних температурах, а уж о сильных морозах и говорить не приходится.

Учет региона проживания

Что еще стоит учесть, так это местоположение. Ведь понятно, что на юге требуется намного меньше тепла, чем в Средней Полосе, а для тех, кто живет на севере «подмосковной» мощности явно будет недостаточною. Для учета региона проживания тоже есть коэффициенты. Даны они с некоторым диапазоном, так как в рамках одной зоны климат все-таки сильно меняется. Если дом находится ближе к южной границе, применяют меньший коэффициент, ближе к северной — больший. Стоит учитывать также и наличие/отсутствие сильных ветров и выбирать коэффициент с их учетом.


Пример корректировки по зонам. Пусть дом, для которого делаем расчет мощности котла, находится на севере Подмосковья. Тогда найденная цифра 21 кВт умножается на 1,5. Итого получаем: 21 кВт * 1,5 = 31,5 кВт.

Как видите, если сравнивать с первоначальной цифрой, полученной при расчете по площади (17 кВт), полученная в результате использования всего двух коэффициентов, значительно отличается. Почти в два раза. Так что эти параметры необходимо учитывать.

Мощность двухконтурного котла

Выше шла речь о расчете мощности котла, который работает только на отопление. Если вы планируете еще и воду греть, необходимо производительность еще увеличить. В расчет мощности котла с возможностью подогрева воды для бытовых нужд закладывают 20-25% запаса (умножить надо на 1,2-1,25).

Чтобы не пришлось покупать очень мощный котел, надо дом максимально

Пример: корректируем под возможность ГВС. Найденную цифру 31,5 кВт умножаем на 1,2 и получаем 37,8 кВт. Разница солидная. Обратите внимание, что запас на подогрев воды берется уже после учета в расчетах местоположения — температура воды от местоположения тоже зависит.

Особенности расчета производительности котла для квартир

Расчет мощности котла для отопления квартир высчитывается по той же норме: на 10 квадратных метров 1 кВт тепла. Но коррекция идет по другим параметрам. Первое, что требует учета — наличие или отсутствие неотапливаемого помещения сверху и снизу.

  • если внизу/вверху находится другая отапливаемая квартира, применяется коэффициент 0,7;
  • если внизу/верху неотапливаемое помещение, никаких изменений не вносим;
  • отапливаемый подвал/чердак — коэффициент 0,9.

Стоит также при расчетах учесть количество стен, выходящих на улицу. В угловых квартирах требуется большее количество тепла:

  • при наличии одной внешней стены — 1,1;
  • две стены выходят на улицу — 1,2;
  • три наружные — 1,3.

Это основные зоны, через которые уходит тепло. Их учитывать обязательно. Можно еще принять во вминание качество окон. Если это стеклопакеты, корректировки можно не вносить. Если стоят старые деревянные окна, найденную цифру надо умножить на 1,2.

Также можно учесть такой фактор, как месторасположение квартиры. Точно также требуется увеличивать мощность, если хотите покупать двухконтурный котел (для подогрева горячей воды).

Расчет по объему

В случае с определением мощности котла отопления для квартиры можно использовать другую методику, которая основывается на нормах СНиПа. В них прописаны нормы на отопление зданий:

  • на обогрев одного кубометра в панельном доме требуется 41 Вт тепла;
  • на возмещение теплопотерь в кирпичном — 34 Вт.

Чтобы использовать этот способ, надо знать общий объем помещений. В принципе, этот подход более правильный, так как он сразу учитывает высоту потолков. Тут может возникнуть небольшая сложность: обычно мы знаем площадь свой квартиры. Объем придется высчитывать. Для этого общую отапливаемую площадь умножаем на высоту потолков. Получаем искомый объем.

Пример расчета мощности котла для отопления квартиры. Пусть квартира находится на третьем этаже пятиэтажного кирпичного дома. Ее общая площадь 87 кв. м, высота потолков 2,8 м.

  1. Находим объем. 87 * 2,7 = 234,9 куб. м.
  2. Округляем — 235 куб. м.
  3. Считаем требуемую мощность: 235 куб. м * 34 Вт = 7990 Вт или 7,99 кВт.
  4. Округляем, получаем 8 кВт.
  5. Так как вверху и внизу находятся отапливаемые квартиры, применяем коэффициент 0,7. 8 кВт * 0,7 = 5,6 кВт.
  6. Округляем: 6 кВт.
  7. Котел будет греть и воду для бытовых нужд. На это дадим запас в 25%. 6 кВт * 1,25 = 7,5 кВт.
  8. Окна в квартире не меняли, стоят старые, деревянные. Потому применяем повышающий коэффициент 1,2: 7,5 кВт * 1,2 = 9 кВт.
  9. Две стены в квартире наружные, потому еще раз умножаем найденную цифру на 1,2: 9 кВт * 1,2 = 10,8 кВт.
  10. Округляем: 11 кВт.

В общем, вот вам эта методика. В принципе, ее можно использовать и для расчета мощности котла для кирпичного дома. Для других типов стройматериалов нормы не прописаны, а панельный частный дом — большая редкость.

Loading...Loading...