Пьезометрический график построение. Назначение пьезометрического графика

К водяным тепловым сетям присоединены отопительные системы зданий различного назначения, калориферные установки вентиляционных систем, системы горячего водоснабжения. Здания могут быть расположены в различных точках рельефа местности, отличающихся геодезическими отметками, и иметь различную высоту. Системы отопления зданий могут быть рассчитаны на работу с различными температурами воды. В этих случаях важно заранее определять давление и напор в любой точке сети.

График напоров (пьезометрический график) строится для определений давления в любой точке сети и систем потребителей теплоты с целью проверки соответствия предельных давлений прочности элементов систем теплоснабжения. По графику напоров выбираются схемы присоединений потребителей к тепловой сети, и подбирается оборудование тепловых сетей. График строится при двух режимах работы системы теплоснабжения - статическом и динамическом. Статический режим характеризуется давлением в сети при неработающих сетевых, но включенных подпиточных насосах. Динамический режим характеризует давления, возникающие в сети и в системах теплопотребителей при работающей системе теплоснабжения, работающих сетевых насосах, при движении теплоносителя.

Графики разрабатываются для основной магистрали тепловой сети и протяженных ответвлений.

Пьезометрический график (график напоров) может быть построен только после выполнения гидравлического расчета трубопроводов - по рассчитанным падениям давления на участках сети.

График строях по двум осям - вертикальной и горизонтальной. На вертикальной оси откладывают напоры в любой точке сети, напоры насосов, профиль сети, высоты отопительных систем в метрах. Пример построения графика показан на рис.6 приложения 9. По горизонтальной оси нанесены длины отдельных участков сети, показано взаимное расположение по горизонтали характерных потребителей теплоты.

За нулевую отметку нужно принимать место установки сетевых насосов. Предварительно, напор на всасывающей стороне сетевых насосов Н ВС принимают равным 10-15 м.

По известным горизонталям на генплане на график нанести профиль местности для магистрали и ответвлений. Показать высоты зданий и линию статического давления; показать напоры сетевого и подпиточного насосов. Напоры наиболее удаленного потребителя принимать не менее 20-25 м вод.ст. Потеря напора в источнике тепла принимается равной 20-25 м вод.ст.

Построенный пьезометрический график должен удовлетворять следующим техническим условиям:

а) давление в местных системах отопления зданий должно быть не более 60 м вод.ст. Если в нескольких зданиях это давление получается более 60 м, то их местные системы присоединяются по независимой схеме;


б) пьезометрическое давление в обратной магистрали должно быть не менее 5 м для предупреждения подсоса воздуха в систему;

в) давление на во всасывающей линии сетевых насосов должно быть не менее 5 м;

г) давление в обратной магистрали как в статическом, так и в динамическом (при работе сетевых насосов) режимах не должно быть ниже статической высоты зданий.

Если для некоторых зданий этого достигнуть не удается, то после системы отопления зданий необходимо установить регулятор «подпора»;

д) пьезометрическое давление в любой точке подающей магистрали должно быть выше давления насыщения при данной температуре теплоносителя (условие «невскипания»). Например, при температуре воды в сети 100°С падающий пьезометр должен отстоять от уровня земли на расстоянии более 38 м;

е) полный напор за сетевыми насосами, отсчитываемый на пьезометре от нулевой отметки, должен быть ниже давления, допускаемого по условиям прочности сетевых подогревателей (140-150 м).

При теплоснабжении от водогрейных котлов эта величина может доходить до 250 м.

Выбор схем присоединения систем отопления к тепловой сети производят, исходя из графика.

При зависимых схемах систем отопления с элеваторным смешением необходимо, что бы пьезометрический напор в обратной магистрали при динамическом и статическом режимах не превышал 60 м, а располагаемый на вводе в здание был не менее 15 м (в расчетах принимать 20-25м) для поддержания требуемого коэффициента смещения элеватора.

Если при данных условиях располагаемый напор на вводе в здание менее 15 м, в качестве смесительного устройства используют центробежный насос, установленный на перемычке.

Для систем отопления, у которых напор в обратной магистрали ввода теплосети и динамическом режиме превышает допустимые значения, требуется установка насоса на обратной линии ввода.

Если гидродинамический пьезометрический напор в обратной магистрали меньше требуемого по условию заполнения отопительной установки сетевой водой, то есть меньше высоты отопительной установки, то на обратной линии абонентского ввода устанавливают регулятор давления «до себя» (РДДС).

При присоединении систем отопления по независимой схеме напор в обратной магистрали ввода теплосети гидродинамическом и статическом режимах не должен превышать допустимого значения(100м) из условия механической прочности водоподогревателей.

Результаты по выбору схем присоединения систем отопления потребителей к тепловой сети сводим в таблицу7.1 аналогично приведенным примерам.

Таблица 7.1 – Выбор схем присоединения систем отопления

Пьезометрический график разрабатывают для двух режимов. Во - первых, для статического режима, когда в системе теплоснабжения от­сутствует циркуляция воды. Считают, что система заполнена водой с температурой 100°С, тем самым исключается необходимость поддержа­ния избыточного давления в теплопроводах во избежание вскипания теплоносителя. Во-вторых, для гидродинамического режима - при на­личии циркуляции теплоносителя в системе.

Разработку графика начинают со статического режима. Первона­чально изыскивают возможность такого расположения на графике ли­нии полного статического давления, чтобы всех абонентов можно было присоединить к тепловой сети по зависимой схеме. Для этого статиче­ское давление не должно превышать допустимого из условия прочности абонентских установок и должно обеспечивать заполнение водой мест-" ных систем. Наличие общей статической зоны для всей системы тепло­снабжения упрощает ее эксплуатацию и повышает ее надежность. Уста­новить единый уровень статического давления удается лишь при спо­койном рельефе местности теплоснабжаемого района. При наличии зна­чительной разности геодезических отметок земли установление общей
статической зоны оказывается невозможным по следующим причинам. Наинизшее положение уровня статического давления определяется из условий заполнения водой местных систем и обеспечения в верхних точках систем наиболее высоких зданий, расположенных в зоне наиболь­ших геодезических отметок, избыточного давления не менее 0,05 МПа. Такое давление оказывается недопустимо высоким для зданий, располо­женных в той части района, который имеет наиболее низкие геодезиче­ские отметки. При таких условиях возникает необходимость разделения системы теплоснабжения на две статические зоны. Одна зона для части теплоснабжаемого района с низкими геодезическими отметками, дру­гая - с высокими.

На рис. 8 9 показаны пьезометрический график и принципиальная схема системы теплоснабжения района, имеющего значительную раз­ность геодезических отметок уровня земли (40 м). Часть района, при­легающая к источнику теплоснабжения, имеет нулевые геодезические отметки, в периферийной части района отметки составляют 40 м. Высо­та зданий 30 и 45 м. Для возможности заполнения водой систем отопле­ния зданий III я IV, расположенных на отметке 40 м и создания в верх­них точках систем избыточного напора в 5 м уровень полного статиче­ского напора должен быть расположен на отметке 75 м (линия S2- S2). В этом случае статический напор будет равен 35 м. Однако напор в 75 м недопустим для зданий I и II, расположенных на нулевой отметке Для них допустимое наивысшее положение уровня полного статическогр

Ляторы РДДС (10) и РД2 (9), ДЯ 0 пґ,-напор, срабатываемый на клапане регулятора РДДС

При гидродинамическом режиме, I-IV - абоненты, / - бак подпиточной воды, 2, 3 - подпиточный насос н регулятор подпитки нижней зоны, 4 - предвключенный насос, 5 - теплофикационные па­роводяные подогреватели, 6 - сетевой насос, 7 - пиковый водогрейный , 8, 9 - подпиточный насос и регулятор подпитки верхней зоны, 10 - регулятор давления «до себя» РДДС 11 - обрат­ный клапан давления соответствует отметке 60 м. Таким образом, в рассматривае­мых условиях установить общую статическую зону для всей системы теплоснабжения нельзя.

Возможным решением является разделение системы теплоснабжения на две зоны с различными уровнями полных статических напоров - на нижнюю с уровнем в 50 м (линия 5] -Si) и верхнюю с уровнем в 75 м (линия S2-S2). При таком решении всех потребителей можно при­соединить к системе теплоснабжения по зависимой схеме, так как стати­ческие напоры в нижней и верхней зонах находятся в допустимых гра­ницах. .

Чтобы при прекращении циркуляции воды в системе уровни статиче­ских давлений установились в соответствии с принятыми двумя зрнами, в месте их соединения располагают разделительное устройство (см. рис. 8.9, б). Это устройство защищает тепловую сеть от повышенного давления при остановке циркуляционных насосов, автоматически рассе­кая ее на две гидравлически независимые зоны: верхнюю и нижнюю.

При остановке циркуляционных насосов падение давления в обрат­ном трубопроводе верхней зоны предотвращает регулятор давления «до себя» РДДС 10, поддерживающий постоянным заданный напор Ярддс в точке отбора импульса. При падении давления он закрывает­ся. Падение давления в подающей линии предотвращает установленный на ней обратный клапан 11, который также закрывается. Таким обра­зом, РДДС и обратный клапан рассекают теплосеть на две зоны. Для подпитки верхней зоны установлены подпиточный насос 8, который за­бирает воду из"нижней зоны и подает б верхнюю, и регулятор подпитки 9. Напор, развиваемый насосом, равен разности гидростатических напо­ров верхней и нижней зон. Подпитку нижней зоны оссуществляет подпи­точный насос 2 и регулятор подпитки 3.

Регулятор РДДС настроен на напор Ярддс (см. рис. 8.9, а). Ha этот же напор настроен регулятор подпитки РД2.

При гидродинамическом режиме регулятор РДДС поддерживает напор на том же уровне. В начале сети подпиточный насос с регулято­ром поддерживают напор Hoi. Разность этих напоров тратится на преодоление гидравлических сопротивлений в обратном трубопроводе между разделительным устройством и циркуляционным насосом источ­ника тепла, остальная часть напора срабатывается в дроссельной под­станции на клапане РДДС. На рис. 8.9, а эта часть напора показана величиной АЯрддс. Дроссельная подстанция при гидродинамическом режиме позволяет поддерживать давление в обратной линии верхней зоны не ниже принятого уровня статического давления S2 - S2.

Пьезометрические линии, соответствующие гидродинамическому ре­жиму, показаны на рис. 8.9,а. Наибольшее давление в обратном трубо­проводе у потребителя IV составляет 90-40 = 50 м, что допустимо. На пор в обратной линии нижней зоны также находится в допустимых гра­ницах.

В подающем трубопроводе максимальный напор после источника тепла равен 160 м, что не превышает допустимого из условия прочности* труб. Минимальный пьезометрический напор в подающем трубопроводе 110 м, что обеспечивает невскипание высокотемпературного теплоноси­теля, так как при расчетной температуре 150°С минимальное допустимое давление равно 40 м.

Таким образом, разработанный для статического и гидродинамиче­ского режимов пьезометрический график обеспечивает возможность при­соединения всех абонентов по зависимой схеме.

Другим возможным решением гидростатического режима системы теплоснабжения, показанной на рис. 8.9, является присоединение часта абонентов по независимой схеме. Здесь могут быть два варианта. Пер­вый вариант - установить общий уровень статического давления на от-
метке 50 м (линия Si - Si), а здания, расположенные на верхних геоде­зических отметках, присоединить по независимой схеме. В этом случае статический напор в водоводяных отопительных подогревателях зданий верхней зоны со стороны греющего теплоносителя составит 50-40= = 10 м, а со стороны нагреваемого теплоносителя определится высотой зданий. Второй вариант - установить общий уровень статического дав­ления на отметке 75 м (линия S2 - Ss) с присоединением зданий верх­ней зоны по зависимой схеме, а зданий нижней зоны - по независимой. В этом случае статический напор в водоводяных подогревателях со сто­роны греющего теплоносителя будет равен 75 м, т. е. меньше допустимой величины (100 м).

При спокойном рельефе местности, но большой протяженности теп­ловых сетей возникает необходимость в установке насосных подкачива­ющих подстанций на подающей и обратной линиях. Это связано с тем, что допустимые потери давления в подающем и обратном трубопроводах оказываются недостаточными для обеспечения оптимальных гидравли­ческих уклонов, а их увеличение путем установки циркуляционных насо­сов, развивающих большие напоры, невозможно из условия прочности трубопроводов и . При установке подкачивающих подстан­ций по трассе тепловой сети увеличивается общий напор насосов, обе­спечивающий циркуляцию воды в системе, увеличиваются гидравличе­ские уклоны при неизменном положении верхней и нижней границ напо­ров в подающем и обратном трубопроводах. Установка подкачивающих подстанций позволяет также увеличить пропускную способность дейст­вующей системы теплоснабжения.

На рис. 8.10 вверху приведен пьезометрический график тепловой сети большой протяженности, а внизу показано расположение источника тепла, трубопроводов и подкачивающих станций. Если при сохранении нагрузки тепловой сети и уклонов пьезометрических линий ограничиться только установкой циркуляционных насосов на станции, тогда они должны развивать напор 140+40 + 40 = 220 м. Максимальный пьезомет­рический напор в начале сети составит 210 м, что недопустимо из усло­вия прочности трубопроводов. Такой пьезометрический график показан на рис. 8.10 пунктиром. Напор в обратной линии в конце магистрали составляет 100 м, что не позволяет присоединять потребителей по зави­симой схеме. Этот напор является предельным при независимом при-

Рис. 8.10. Пьезо­метрический гра. фик тепловой се­ти большой про­тяженности

1 - источник тепла;

2 - место расположе­ния подкачивающих насосов на подаю­щем и обратном теп­лопроводах; 3 - кон­цевой абонент; S - S - линия полного статического напора; #„, Н Н,

Н п. и н. п

Напоры, раз­виваемые насосами: сетевым, подпиточ­ным, подкачивающим на подающей линии, подкачивающим на обратной линии;

И3 - высота зданий
соединении. При установке насосных подстанций напор циркуляционного* насоса источника тепла снижается до 140 м, а максимальный напор в начале сети до 130 м, т. е. до допустимого. При этом снижение напора в подающем трубопроводе между источником тепла и насосной подстан­цией не вызывает недопустимого снижения напора в концевой части се­ти. Подкачивающие насосы повышают в этой зоне напор с 80 до 120 м. В результате такого решения напор в подающем трубопроводе изменя­ется в пределах от 80 до 130 м.

Подстанция на обратной линии снижает давление в концевой части сети между подстанцией и абонентом 3. В этой зоне напор в обратной линии не превышает допустимой величины в 60 м.

Таким образом, в результате установки подкачивающих насосных подстанций на тепловой сети большой протяженности удается выдер­жать расположение пьезометрических линий как в подающем, так и в обратном трубопроводах в допустимых границах при сохранении эконо­мически обоснованного удельного падения давления.

В случае понижения рельефа местности от источника тепла сущест­венно возрастает давление в обратной линии периферийной зоны района и оно может выйти за допустимые границы. Для снижения давления в этой части обратной линии на ней устанавливают подкачивающую на­сосную подстанцию. Такой случай показан на рис. 8.11. Если не уста­навливать насосной подстанции на обратной линии, тогда напор у кон­цевого абонента 3 будет равен 60 + 30 = 90 м, что не позволит осущест­вить зависимое присоединение. Пьезометрические линии подающего и обратного теплопроводов для системы б. ез подкачивающей подстанции при развиваемом циркуляционным насосом напоре 130 + 30=160 м по­казаны на рис. 8.11 пунктиром. Максимальный напор в подающей линии оказывается равным 140+30=170 м, т. е. превышает допустимый (160 м). В результате установки на обратном теплопроводе подкачива­ющих насосов пьезометрическая линия подающего теплопровода экви­дистантно опускается на 30 м, а давление в Обратном теплопроводе между насосной подстанцией и концевым абонентом оказывается в зоне

Рис. 8 12. Пьезометрический график тепловой сети при значительно снижающемся рельефе местности от источника тепла и разделении системы на две статические зоны л - пьезометрический график, б-принципиальная схема системы теплоснабжения; /-IV - або­ненты; Si - Si - линия полного статического напора в верхней зоне; S2 - Sj - линия полного Статического напора в нижней зоне; 1 - автомат рассечки; 2 - подкачивающий насос; 3 - регу­лятор подпитки Нижней зоны

Лить систему на две статические зоны: верхнюю вблизи источника и нижнюю на дериферии. Такой случай показан на рис. 8.12. Чтобы сни­зить давление в обратной линии в концевой части магистрали в точке М установлена насосная подкачивающая подстанция. Насосы развивают напор в 40 м. Это позволяет снизить напор, развиваемый сетевыми на­сосами, до 85 м и соответственно снизить давление в подающей линии.

Тепловая сеть разделена на две статические зоны: верхнюю вблизи источника тепла с пьезометрическим напором в 50 м и нижнюю в пери­ферийной части сети с пьезометрическим напором в 50 м. Для разделения сети при остановке насосов на две статические зоны на подающей линии установлен автомат рассечки 1, а на обратной линии - обратный кла­пан. При остановке насосов давление в трубопроводах начинает вырав­ниваться и растет давление в обратном трубопроводе на участке от на­сосной подстанции до концевой точки IV. Рост давления передается по импульсной трубке к регулятору, управляющему клапаном рассечки, клапан закрывается и гидравлически разобщает подающую линию на две зоны. Переток воды из верхней зоны в нижнюю предотвращает об­ратный клапан, установленный на обратной линии. В результате при статическом режиме сеть будет разделена на две зоны с уровнями Si - Si и S2 - 52.

Поддержание статического уровня верхней зоны обеспечивает под - питочное устройство источника тепла. Поддержание статического уровня нижней зоны обеспечивает двухимпульсный дроссельный клапан 3. Основным импульсом является давление в обратной линии, разрешаю­щим - давление в подающей линии нижней зоны.

На пьезометрическом графике в масштабе наносятся рельеф местности, высота присоединенных зданий, напор в сети. По этому графику легко определить напор и располагаемый напор в любой точке сети и абонентских системах.

За горизонтальную плоскость отсчета напоров принят уровень 1 – 1 (см.рис.6.5). Линия П1 – П4 – график напоров подающей линии. Линия О1 – О4 – график напоров обратной линии. Н о1 – полный напор на обратном коллекторе источника; Н сн – напор сетевого насоса; Н ст – полный напор подпиточного насоса, или полный статический напор в тепловой сети; Н к – полный напор в т.К на нагнетательном патрубке сетевого насоса; DH т – потеря напора в теплоприготовительной установке; Н п1 – полный напор на подающем коллекторе, Н п1 = Н к – DH т. Располагаемый напор сетевой воды на коллекторе ТЭЦ Н 1 =Н п1 -Н о1 . Напор в любой точке сети i обозначается как Н п i , H oi – полные напоры в прямом и обратном трубопроводе. Если геодезическая высота в точке i есть Z i , то пьезометрический напор в этой точке есть Н п i – Z i , H o i – Z i в прямом и обратном трубопроводах, соответственно. Располагаемый напор в точке i есть разность пьезометрических напоров в прямом и обратном трубопроводах – Н п i – H oi . Располагаемый напор в тепловой сети в узле присоединения абонента Д есть Н 4 = Н п4 – Н о4 .

Рис.6.5. Схема (а) и пьезометрический график (б) двухтрубной тепловой сети

Потеря напора в подающей линии на участке 1 – 4 есть . Потеря напора в обратной линии на участке 1 – 4 есть . При работе сетевого насоса напор Н ст подпиточного насоса регулируется регулятором давления до Н о1 . При остановке сетевого насоса в сети устанавливается статический напор Н ст, развиваемый подпиточным насосом.

При гидравлическом расчете паропровода можно не учитывать профиль паропровода из-за малой плотности пара. Потери напора у абонентов, например , зависит от схемы присоединения абонента. При элеваторном смешении DН э = 10…15 м, при безэлеваторном вводе – Dн бэ =2…5 м, при наличии поверхностных подогревателей DН п =5…10 м, при насосном смешении DН нс = 2…4 м.

Требования к режиму давления в тепловой сети:

В любой точке системы давление не должно превышать максимально допустимой величины. Трубопроводы системы теплоснабжения рассчитаны на 16 ата, трубопроводы местных систем – на давление 6…7 ата;

Во избежание подсосов воздуха в любой точке системы давление должно быть не менее 1.5 ата. Кроме того, это условие необходимо для предупреждения кавитации насосов;

В любой точке системы давление должно быть не меньше давления насыщения при данной температуре во избежание вскипания воды.

На пьезометрическом графике в масштабе наносятся рельеф местности, высота присоединенных зданий, напор в сети. По этому графику легко определить напор и располагаемый напор в любой точке сети и абонентских системах.

За горизонтальную плоскость отсчета напоров принят уровень 1 – 1 (см.рис.6.5). Линия П1 – П4 – график напоров подающей линии. Линия О1 – О4 – график напоров обратной линии. Н о1 – полный напор на обратном коллекторе источника; Н сн – напор сетевого насоса; Н ст – полный напор подпиточного насоса, или полный статический напор в тепловой сети; Н к – полный напор в т.К на нагнетательном патрубке сетевого насоса; DH т – потеря напора в теплоприготовительной установке; Н п1 – полный напор на подающем коллекторе, Н п1 = Н к – DH т. Располагаемый напор сетевой воды на коллекторе ТЭЦ Н 1 =Н п1 -Н о1 . Напор в любой точке сети i обозначается как Н п i , H oi – полные напоры в прямом и обратном трубопроводе. Если геодезическая высота в точке i есть Z i , то пьезометрический напор в этой точке есть Н п i – Z i , H o i – Z i в прямом и обратном трубопроводах, соответственно. Располагаемый напор в точке i есть разность пьезометрических напоров в прямом и обратном трубопроводах – Н п i – H oi . Располагаемый напор в тепловой сети в узле присоединения абонента Д есть Н 4 = Н п4 – Н о4 .

Рис.6.5. Схема (а) и пьезометрический график (б) двухтрубной тепловой сети

Потеря напора в подающей линии на участке 1 – 4 есть . Потеря напора в обратной линии на участке 1 – 4 есть . При работе сетевого насоса напор Н ст подпиточного насоса регулируется регулятором давления до Н о1 . При остановке сетевого насоса в сети устанавливается статический напор Н ст, развиваемый подпиточным насосом.

При гидравлическом расчете паропровода можно не учитывать профиль паропровода из-за малой плотности пара. Потери напора у абонентов, например , зависит от схемы присоединения абонента. При элеваторном смешении DН э = 10…15 м, при безэлеваторном вводе – Dн бэ =2…5 м, при наличии поверхностных подогревателей DН п =5…10 м, при насосном смешении DН нс = 2…4 м.

Требования к режиму давления в тепловой сети:

В любой точке системы давление не должно превышать максимально допустимой величины. Трубопроводы системы теплоснабжения рассчитаны на 16 ата, трубопроводы местных систем – на давление 6…7 ата;

Во избежание подсосов воздуха в любой точке системы давление должно быть не менее 1.5 ата. Кроме того, это условие необходимо для предупреждения кавитации насосов;

В любой точке системы давление должно быть не меньше давления насыщения при данной температуре во избежание вскипания воды.

Конец работы -

Эта тема принадлежит разделу:

Гидравлический расчет тепловых сетей

В задачу гидравлического расчета входят.. определение диаметра трубопроводов.. определение падения давления напора..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Схемы и конфигурации тепловых сетей
Схема тепловой сети (ТС) определяется размещением источников тепла по отношению к району потребления, характером тепловой нагрузки и видом теплоносителя. Удельная протяженность паровых сетей на еди

Основные расчетные зависимости
Одномерное установившееся движение жидкости

Порядок гидравлического расчета
Обычно при гидравлическом расчете задаются расход теплоносителя и суммарное падение давления на участке. Требуется найти диаметр трубопровода. Расчет состоит из двух этапов – предварительного и пов

Особенности гидравлического расчета паропроводов
Диаметр паропровода рассчитывают исходя либо из допустимых потерь давления, либо из допустимой скорости пара. Предварительно задается плотность пара на расчетном участке. При расчете по до

Режим давления в сети и выбор схемы абонентского ввода
1. Для нормальной работы потребителей тепла напор в обратной линии должен быть достаточен для заполнения системы, Ho > DHмс. 2. Давлени

Гидравлический режим тепловых сетей
Потери давления в сети пропорциональны квадрату расхода -. Пользуясь формулой для р

Включение насосных подстанций
Насосные подстанции могут устанавливаться на подающем, обратном трубопроводах, а также на перемычке между ними. Сооружение подстанций вызывается неблагоприятным рельефом, большой дальностью передач


Если ТС питается от нескольких источников тепла, то в магистральных линиях возникают точки встречи потоков воды от разных источников. Положение этих точек зависит от сопротивления ТС, распределения


Рис.6.18. График напоров в кольцевой сети

Гидравлический режим открытых систем теплоснабжения
Основная особенность гидравлического режима открытых систем теплоснабжения заключается в том, что при наличии водоразбора расход воды в обратной линии меньше, чем в подающей. Практически эта разнос

Общие принципы гидравлического расчета трубопроводов систем водяного отопления подробно изложены в разделе Системы водяного отопления . Они же применимы и для расчета теплопроводов тепловых сетей, но с учетом некоторых их особенностей. Так в расчетах теплопроводов принимаются турбулентное движение воды (скорость воды больше 0,5 м/с, пара - больше 20-30 м/с, т.е. квадратичная область расчета), значения эквивалентной шероховатости внутренней поверхности стальных труб больших диаметров, мм, принимают для: паропроводов - k = 0,2; водяной сети - k = 0,5; конденсатопроводов - k = 0,5-1,0.

Расчетные расходы теплоносителя по отдельным участкам теплосети определяются как сумма расходов отдельных абонентов с учетом схемы присоединения подогреватели ГВС. Кроме того, необходимо знать оптимальные удельные падения давления в трубопроводах, которые предварительно определяются технико-экономическим расчетом. Обычно их принимают равными 0,3-0,6 кПа (3-6 кгс/м 2) для магистральных тепловых сетей и до 2 кПа (20 кгс/м 2) - для ответвлений.

При гидравлическом расчете решаются следующие задачи: 1) определение диаметров трубопроводов; 2) определение падения давления-напора; 3) определение действующих напоров в различных точках сети; 4) определение допустимых давлений в трубопроводах при различных режимах работы и состояниях теплосети.

При проведении гидравлических расчетов используются схемы и геодезический профиль теплотрассы, с указанием размещения источников теплоснабжения, потребителей теплоты и расчетных нагрузок. Для ускорения и упрощения расчетов вместо таблиц используются логарифмические номограммы гидравлического расчета (рис. 1), а в последние годы - компьютерные расчетные и графические программы.

Рисунок 1.

ПЬЕЗОМЕТРИЧЕСКИЙ ГРАФИК

При проектировании и в эксплуатационной практике для учета взаимного влияния геодезического профиля района, высоты абонентских систем, действующих напоров в тепловой сети широко пользуются пьезометрическими графиками. По ним нетрудно определить напор (давление) и располагаемое давление в любой точке сети и в абонентской системе для динамического и статического состояния системы. Рассмотрим построение пьезометрического графика, при этом будем считать, что напор и давление, падение давления и потеря напора связаны следующими зависимостями: Н = р/γ, м (Па/м); ∆Н = ∆р/ γ, м (Па/м); и h = R/ γ (Па), где Н и ∆Н - напор и потеря напора, м (Па/м); р и ∆р - давление и падение давления, кгс/м 2 (Па); γ - массовая плотность теплоносителя, кг/м 3 ; h и R - удельная потеря напора (безразмерная величина) и удельное падение давления, кгс/м 2 (Па/м).

При построении пьезометрического графика в динамическом режиме за начало координат принимают ось сетевых насосов; взяв эту точку за условный нуль, строят профиль местности по трассе основной магистрали и по характерным ответвлениям (отметки которых отличаются от отметок основной магистрали). На профиле в масштабе вычерчивают высоты присоединяемых зданий, затем, приняв предварительно напор на всасывающей стороне коллектора сетевых насосов Н вс = 10-15 м, наносится горизонталь А 2 Б 4 (рис. 2, а). От точки А 2 откладывают по оси абсцисс длины расчетных участков теплопроводов (с нарастающим итогом), а по оси ординат из концевых точек расчетных участков - потери напора Σ∆Н на этих участках. Соединив верхние точки этих отрезков, получим ломаную линию А 2 Б 2 , которая и будет пьезометрической линией обратной магистрали. Каждый вертикальный отрезок от условного уровня А 2 Б 4 до пьезометрической линии А 2 Б 2 обозначает собой потери напора в обратной магистрали от соответствующей точки до циркуляционной насосной на ТЭЦ. От точки Б 2 в масштабе откладывается вверх необходимый располагаемый напор для абонента в конце магистрали ∆Н аб, который принимается равным 15-20 м и более. Полученный отрезок Б 1 Б 2 характеризует напор в конце подающей магистрали. От точки Б 1 откладывается вверх потеря напора в подающем трубопроводе ∆Н п и проводится горизонтальная линия Б 3 А 1 .

Рисунок 2. а - построение пьезометрического графика; б - пьезометрический график двухтрубной тепловой сети

От линии А 1 Б 3 вниз откладываются потери напора на участке подающей линии от источника теплоты до конца отдельных расчетных участков, и строится аналогично предыдущему пьезометрическая линия A 1 B 1 подающей магистрали.

При закрытых системах ЦТС и равных диаметрах труб подающей и обратной линий пьезометрическая линия A 1 B 1 является зеркальным отображением линии А 2 Б 2 . От точки А, откладывается вверх потеря напора в бойлерной ТЭЦ или в контуре котельной ∆Н б (10-20 м). Давление в подающем коллекторе будет Н н, в обратном - Н вс, а напор сетевых насосов - Н с.н.

Важно отметить, что при непосредственном присоединении местных систем обратный трубопровод теплосети гидравлически связан с местной системой, при этом давление в обратном трубопроводе целиком передается местной системе и наоборот.

При первоначальном построении пьезометрического графика напор на всасывающем коллекторе сетевых насосов Н вс был принят произвольно. Перемещение пьезометрического графика параллельно самому себе вверх или вниз позволяет принять любые давления на всасывающей стороне сетевых насосов и соответственно в местных системах.

При выборе положения пьезометрического графика необходимо исходить из следующих условий:

1. Давление (напор) в любой точке обратной магистрали не должно быть выше допускаемого рабочего давления в местных системах, для новых систем отопления (с конвекторами) рабочее давление 0,1 МПа (10 м вод. ст.), для систем с чугунными радиаторами 0,5-0,6 МПа (50-60 м вод. ст.).

2. Давление в обратном трубопроводе должно обеспечить залив водой верхних линий и приборов местных систем отопления.

3. Давление в обратной магистрали во избежание образования вакуума не должно быть ниже 0,05-0,1 МПа (5-10 м вод. ст.).

4. Давление на всасывающей стороне сетевого насоса не должно быть ниже 0,05 МПа (5 м вод. ст.).

5. Давление в любой точке подающего трубопровода должно быть выше давления вскипания при максимальной (расчетной) температуре теплоносителя.

6. Располагаемый напор в конечной точке сети должен быть равен или больше расчетной потери напора на абонентском вводе при расчетном пропуске теплоносителя.

7. В летний период давление в подающей и обратной магистралях принимают больше статического давления в системе ГВС.

Статическое состояние системы ЦТ. При остановке сетевых насосов и прекращении циркуляции воды в системе ЦТ она переходит из динамического состояния в статическое. В этом случае давления в подающей и обратной линиях теплосети выровняются, пьезометрические линии сливаются в одну - линию статического давления, и на графике она займет промежуточное положение, определяемое давлением подпиточного устройства источника СЦТ.

Давление подпиточного устройства устанавливается персоналом станции или по наивысшей точке трубопровода местной системы, непосредственно присоединенной к теплосети, или по давлению паров перегретой воды в высшей точке трубопровода. Так, например, при расчетной температуре теплоносителя Т 1 = 150 °С давление в высшей точке трубопровода с перегретой водой установится равным 0,38 МПа (38 м вод. ст.), а при Т 1 = 130 °С - 0,18 МПа (18 м вод. ст.).

Однако во всех случаях статическое давление в низкорасположенных абонентских системах не должно превышать допускаемого рабочего давления 0,5-0,6 МПа (5-6 атм). При его превышении эти системы следует переводить на независимую схему присоединения. Понижение статического давления в тепловых сетях может быть осуществлено путем автоматического отключения от сети высоких зданий.

В аварийных случаях, при полной потере электроснабжения станции (остановка сетевых и подпиточных насосов), произойдет прекращение циркуляции и подпитки, при этом давления в обеих линиях теплосети выровняются по линии статического давления, которое начнет медленно, постепенно понижаться в связи с утечкой сетевой воды через неплотности и охлаждения ее в трубопроводах. В этом случае возможно вскипание перегретой воды в трубопроводах с образованием паровых пробок. Возобновление циркуляции воды в таких случаях может привести к сильным гидравлическим ударам в трубопроводах с возможным повреждением арматуры, нагревательных приборов и др. Во избежание такого явления циркуляцию воды в системе ЦТ следует начать только после восстановления путем подпитки теплосети давления в трубопроводах на уровне не ниже статического.

Для обеспечения надежной работы тепловых сетей и местных систем необходимо ограничить возможные колебания давления в тепловой сети допустимыми пределами. Для поддержания требуемого уровня давлений в тепловой сети и местных системах в одной точке тепловой сети (а при сложных условиях рельефа - в нескольких точках) искусственно сохраняют постоянное давление при всех режимах работы сети и при статике с помощью подпиточного устройства.

Точки, в которых давление поддерживается постоянным, называются нейтральными точками системы. Как правило, закрепление давления осуществляется на обратной линии. В этом случае нейтральная точка располагается в месте пересечения обратного пьезометра с линией статического давления (точка НТ на рис. 2, б), поддержание постоянного давления в нейтральной точке и восполнение утечки теплоносителя осуществляются подпиточными насосами ТЭЦ или РТС, КТС через автоматизированное подпиточное устройство. На линии подпитки устанавливаются автоматы-регуляторы, работающие по принципу регуляторов «после себя» и «до себя» (рис. 3).

Рисунок 3. 1 - сетевой насос; 2 - подпиточный насос; 3 - подогреватель сетевой воды; 4 - клапан регулятора подпитки

Напоры сетевых насосов Н с.н принимаются равными сумме гидравлических потерь напора (при максимальном - расчетном расходе воды): в подающем и обратном трубопроводах тепловой сети, в системе абонента (включая вводы в здание), в бойлерной установке ТЭЦ, пиковых котлах ее или в котельной. На источниках теплоты должно быть не менее двух сетевых и двух подпиточных насосов, из которых - по одному резервному.

Величина подпитки закрытых систем теплоснабжения принимается равной 0,25 % объема воды в трубопроводах тепловых сетей и в абонентских системах, присоединенных к теплосети, ч.

При схемах с непосредственным водоразбором величина подпитки принимается равной сумме расчетного расхода воды на ГВС и величины утечки в размере 0,25 % вместимости системы. Вместимость теплофикационных систем определяется по фактическим диаметрам и длинам трубопроводов или по укрупненным нормативам, м 3 /МВт:

Сложившаяся по признаку собственности разобщенность в организации эксплуатации и управления системами теплоснабжения городов самым отрицательным образом сказывается как на техническом уровне их функционирования, так и на их экономической эффективности. Выше отмечалось, что эксплуатацией каждой конкретной системы теплоснабжения занимается несколько организаций (подчас «дочерних» от основной). Однако специфика систем ЦТ, в первую очередь тепловых сетей, определяется жесткой связью технологических процессов их функционирования, едиными гидравлическими и тепловыми режимами. Гидравлический режим системы теплоснабжения, являющийся определяющим фактором функционирования системы, по своей природе крайне неустойчив, что делает системы теплоснабжения трудноуправляемыми по сравнению с другими городскими инженерными системами (электро-, газо-, водоснабжение).

Ни одно из звеньев систем ЦТ (источник теплоты, магистральные и распределительные сети, тепловые пункты) самостоятельно не может обеспечить требуемые технологические режимы функционирования системы в целом, а, следовательно, и конечный результат - надежное и качественное теплоснабжение потребителей. Идеальной в этом смысле является организационная структура, при которой источники теплоснабжения и тепловые сети находятся в ведении одного предприятия-структуры.

Loading...Loading...