Как лить пластик в домашних условиях. Плавка пластмассы в домашних условиях. Виды автомобильных пластиков

Пластические массы, пластики,- материалы на основе полимеров, способные приобретать заданную форму при нагревании под давлением и сохранять её после охлаждения. Могут содержать наполнители, пластификаторы, стабилизаторы, пигменты, смазки и др. компоненты. В зависимости от характера превращений, происходящих с полимером при его переработке в изделие, подразделяются на термопласты (важнейшие из них - пластмассы на основе полиэтилена, полипропилена, полистирола, поливинилхлорида, полиамидов, поликарбонатов, политетрафторэтилена) и реактопласты (наиболее крупнотоннажный вид - фенопласты, широко используются также пластмассы на основе эпоксидных смол, полиэфирных смол, кремнийорганических полимеров и др.).

Пластмассы различают, кроме того, по типу полимера (напр., аминопласты, этролы), наполнителя (напр., стеклопластики, углепластики) и по эксплуатационным, характеристикам (антифрикционные, атмосферо-, термо-, огнестойкие и т. д.).

Основные методы переработки термопластов - литьё под давлением, экструзия, вакуум- и пневмоформование; реактопластов - прессование и литьё под давлением.

Наиболее ценные свойства пластмасс: малая плотность, высокие электроизоляционные и теплоизоляционные характеристики, стойкость в агрессивных средах, высокая механическая прочность при различных видах механических нагрузок.

Пластмассы — важнейшие конструкционные материалы современной техники, используемые во всех отраслях промышленности, на железнодорожном и других видах транспорта, в строительстве, сельском хозяйстве, медицине и быту.

Основную массу полимеров составляют органические вещества, однако известно и немало неорганических и элементорганических полимеров. Характерной чертой полимера является то, что при образовании его молекулы соединяется большое число одинаковых или разных молекул низкомолекулярных веществ - мономеров. Это приводит к тому, что получается длинная цепная молекула, которую называют макромолекулой. Составляющие ее низкомолекулярные повторяющиеся структурные единицы, или элементарные звенья, соединены прочными химическими связями. Сами же макромолекулы связаны между собой слабыми физическими межмолекулярными силами.

Цепное строение макромолекул и различная природа связей вдоль и между цепями определяет комплекс особых физико-химических свойств полимерного материала, таких, как, например, одновременное сочетание в нем прочности, легкости и эластичности, способности образовывать пленки и волокна. Цепное строение макромолекул ответственно также за то, что полимеры могут значительно набухать в жидкостях, образовывая при этом ряд систем, промежуточных между твердым телом и жидкостью. Растворы полимеров отличаются повышенной вязкостью.

Соединение мономеров в макромолекулы происходит в результате химических реакций, которые протекают по законам цепных или ступенчатых процессов. Число повторяющихся звеньев в макромолекуле определяет молекулярную массу полимера, которая может составлять десятки, сотни тысяч и миллионы углеродных единиц. Какой бы реакцией ни был получен полимер, он всегда состоит из набора макромолекул, различных по размеру, поэтому молекулярная масса полимера оценивается некоторой средней величиной,

При переработке, которая обычно проводится при повышенных температурах, в полимер, как правило, вводят различные необходимые добавки, такие как пластификаторы, наполнители, стабилизаторы, модификаторы свойств и другие.

Основные виды пластиков

Основные виды пластиков Основные характеристики Область применения пластиков
Полиэтилен низкой плотности ПНД Легкий, прочный, гибкий материал с низкой газо-и водопроницаемостью, хороший диэлектрик. В определенных условиях обладает высокой химической стойкостью к органическим растворителям и агрессивным средам.
Температура плавления 105-115ºС
Морозостойкость -70ºС
Применяется для изготовления:
Пленок, изоляции проводов и кабелей, детских игрушек, изделий бытового назначения, медицинской и косметической упаковки, упаковки для воды, соков, моющих средств и.т.п.
Полиэтилен высокой плотности ПВД
По сравнению с ПНД ПВД характеризуется более высокой теплостойкостью, огнестойкостью, повышенными показателями физико-механических характеристик при растяжении и изгибе.
Температура плавления 125-135ºС
Морозостойкость -70ºС
Отдельные марки данного пластика могут эксплуатироваться при температурах от -260ºС до +120ºС.
Отдельные марки данного пластика обладают стойкостью к растрескиванию, химической стойкостью в наиболее агрессивных средах.
Применяется для изготовления трубопроводов, коррозийно-устойчивой аппаратуры, косметической и медицинской упаковки, в производстве автомобильных бензобаков, при изготовлении упаковки для мясной и рыбной продукции.
Полипропилен ПП ПП является более жестким пластиком, чем полиэтилен.
Температура плавления данного пластика 170ºС, а температурный интервал эксплуатации от -10º до +140ºС, поэтому изделия из данного пластика могут подвергаться стерилизации
Морозостойкость отдельных видов данного пластика может быть повышена до -60ºС
Широко применяется для изготовления различных видов медицинской упаковки.
Различных деталей технического назначения.
Полистирол ПС Данный пластик отличается высокими диэлектрическими свойствами, оптической прозрачностью, низкой теплостойкостью (до 70ºС) и низкой ударной вязкостью, хорошо перерабатывается в изделия литьём под давлением и экструзией. Применяется при производстве изделий электронной, электротехнической и радиотехнической промышленности, товаров народного потребления, а также листов, профилей и пленок.
АБС-пластики По сравнению с ударопрочными марками полистирола АБС-пластики обладают повышенной теплостойкостью, ударной прочностью и химстойкостью.
Данные пластики обладают высокой стойкостью к маслам, глицерину, щелочам, кислотам, атмосферному старению. Отдельные марки пластиков обладают достаточно высокой прозрачностью.
Температура плавления 190-230ºС
Применяются при производстве изделий в автомобилестроении, приборостроении, всевозможных видов оргтехники, медицинской аппаратуры и т.п.
Полиамид ПА Полиамиды относятся к конструкционным пластикам; они характеризуются прекрасной стойкостью к маслам, бензину, керосину, высокой химической стойкостью к щелочным средам, высокой изностойкостью.
К недостаткам данного вида пластиков следует отнести нестабильность размеров в условиях эксплуатации, связанных с довольно значительным водопоглащением.
Температура плавления 180-260ºС
Применяются при производстве изделий технического назначения.
Поликарбонат ПК
Поликарбонат относится к конструкционным пластикам; он характеризуется высокими прочностными характеристиками, особенно при действии ударных нагрузок, низким водопоглощением, высокими диэлектрическими характеристиками, высокой оптической прозрачностью. Температурный интервал эксплуатации ПК от -100ºС до +135ºС Применяется в машиностроении, приборостроении, для изготовления различных корпусных изделий. Благодаря своей высокой прозрачности этот пластик используется в медицине и при изготовлении пищевой упаковки.
Поливинилхлорид ПВХ Марочный ассортимент данного пластика очень широк.
Делят на жесткий ПВХ
Данный пластик водо- химостойкий, обладает хорошими диэлектрическими свойствами. К недостаткам можно отнести ни низкую ударную прочность и невысокую температуру эксплуатации (не выше 70-80ºС)
И эластичный ПВХ
Данный пластик характеризуется высокой эластичностью в широком диапазоне температур (от -60ºС до +100ºС), хорошими диэлектрическими характеристиками, высокой водо-,бензо-и маслостойкостью.
Данные пластики применяются для изготовления труб, шлангов, различных видов профилей, изоляционных прокладок, изделий медицинского назначения и т.п.

Вернуться назад

Работа с ПВХ. Как его гнуть и шлифовать.

Сегодня мы будем размягчать, гнуть и шкурить ПВХ.

И снова, прежде чем начать, я хочу отметить, что во время нагревания ПВХ выделяются вредные для организма испарения. По этому, нагревайте ПВХ в хорошо проветриваемом помещении, используйте маску и не используйте для нагревания ПВХ печь, в которой вы готовите пищу.

Выбираем клей

Клеить различные детали из ПВХ друг к другу мы будем при помощи суперклея. Вы можете использовать первый попавшийся из Союзпечати, гелиевый, жидкий, да хоть вездесущий 401 клей. Он тоже подойдёт.

Почему именно суперклей? Всё просто. Во-первых, он очень быстро высыхает, что экономит вам уйму времени, а во вторых склеенные места будут даже прочнее, чем сам ПВХ. Так что он хорош и для укрепления.

Для примера сделаем простенький наплечник

Сперва, надо раздобыть немного рефов, что вполне очевидно. Делать наплечник с нуля, не очень то эффективно.

Теперь нам нужны выкройки. Для их изготовления используем картон. Просто прикладываем, прикидываем и обрезаем лишнее. Когда форма нас будет более чем устраивать, переносим на ПВХ.
Так же нам понадобится ботик для наплечников.

Виды автомобильных пластиков

Думаю не сложно догадаться как сделать для него выкройку.

Вооружаемся канцелярским ножом и аккуратно разрезаем детали. У вас должно получиться нечто похожее на рисунок выше.

Теперь склеиваем детали вместе. Клей наносите тонкой однородной полоской. Не стоит лить его как из ведра, всего нужно в меру. Клеевые подтёки по краям вряд ли добавят красоты наплечнику.

Если ваши детали не особо подходят друг другу и между поверхностями есть зазоры, может случиться так, что где-то они не приклеятся. В таком случае вам надо ножом подогнать детали до степени максимальной притирки друг к другу. Затем слегка зашкурить склеиваемую поверхность наждачкой (это поможет клею лучше схватиться) и приклеить детали друг к другу снова.

После того как вы приклеили бортик, подрежьте края, чтобы не было торчащих углов.

Кстати, когда наносите клей, то делайте это непрерывной линией или зигзагом. Это обеспечит равномерное покрытие и приклеивание поверхностей. Если же вы нанесёте клей точками, то позже, после нагревания, вас может ждать неприятный сюрприз в виде волнистых поверхностей.

Если вам нужно нанести какой-либо узор или гравировку, то лучше это сделать до нагревания и сгибания ПВХ. Вам просто будет удобнее, поверьте.

Теперь, приступим к самой интересной части.

Подготовьте немного фольги. На неё мы будем класть нашу деталь.

Прогрейте печь до 225 градусов.

И, наконец, поместите детали в печь. Теперь можно надевать перчатки. Через 3-5 минут, ваш ПВХ будет мягким и податливым. Доставайте скорее прогретые детали и начинайте их гнуть руками или при помощи заготовленных форм.

Немного слов о формах. Для них сгодится практически всё. Лиж бы поверхность могла выдерживать не очень высокие, но всё же температуры. В конце концов, можно гнуть ПВХ даже на собственном теле. Главное, чтобы от жара вас отделял слой одежды.

Можно долго и много говорить о том, как надо гнуть ПВХ, но на мой взгляд, лучше один раз увидеть. По этому, я подготовила для вас это видео:


(прим. редакции: в целом она не говорит ничего полезного, так что в переводе видео не нуждается)

После того как вы придали детали нужную форму, вооружаемся наждачной бумагой и начинаем обрабатывать края бортика. Ваша задача скруглить края, чтобы наплечник выглядел более натуралистично.

При помощи клея, так же, можно устранять мелкие полости и царапины. Просто нанесите на них немного клея и распределите его тонким слоем по поверхности. Затем зачистите всё мелкой наждачкой.

Так же при помощи клея, хорошо маскировать щели. Просто повторяйте процедуру нанесения клея на щель и зачистки поверхности при помощи наждачной бумаги до тех пор, пока результат вас не удовлетворит.

После того как вы закончите с грубой обработкой, берите самую мелкую наждачку, и пройдетесь по всем обработанным поверхностям. Это поможет сгладить контуры ещё больше и избавиться от царапин, оставленных более крупной наждачкой.

На этом шаге у вас должен получиться готовый к грунтовке и покраске наплечник. Поздравляем вас с этим.

Ну, и напоследок. Выше вы можете увидеть весь мой набор поверхностей, которые я использую в качестве форм. Как вы можете видеть сгодиться практически что угодно. От манекена, до жестяной банки. На этом всё.

Успехов вам в крафте,
ваша редакция.

Обсудить вконтакте…

26.04.2018

Как горят и плавятся разные пластмассы?

Полимерные материалы и пластики (пластмассы) могут гореть, выделяя в воздух большое количество веществ, в том числе и весьма токсичных. Но особенности горения у каждой группы пластмасс свои, поэтому при производстве подбирается определенный набор материалов, которые могут использоваться для получения конкретной продукции. Кроме непосредственного горения, которое полностью разрушает любой материал, пластмассы способны размягчаться и плавиться, а при сильном охлаждении становиться хрупкими, что тоже ограничивает возможности их применения.

Технологии производства пластика из полимеров и сополимеров учитывают весь набор физических и химических параметров материала. В современном производстве применяются специальные добавки — антипирины, способные значительно изменить температуру плавления и горения пластмассы, но как правило это дает эффект изменения ее механических свойств. От чего зависит прочность пластмассы — это предмет отдельного описания.

Поведение пластмасс при нагревании и охлаждении

Пригодность полимеров и пластиков к производству изделий и последующему использованию зависит поведения материала при нагревании и охлаждении. Горение — это последняя, решающая точка, а до нее любая пластмасса проходит еще несколько состояний:

    постепенное увеличение пластичности — свойственно не всем материалам, но может проявиться в потере формы готовым изделием и деталью;

    предел размягчения пластмассы — температура, при которой материал становится податливым, но еще не плавится;

    предел плавления — температурный порог, после достижения которого проявляется свойство текучести без приложения посторонних усилий;

    предел хрупкости — нижний порог температуры при охлаждении, при достижении которого цепочки полимеров разрываются, наполнитель отделяется, и пластмасса становится хрупкой, разрушается от небольших нагрузок и ударов.

Листовой пластик изготавливается на оборудовании, поддерживающем температуру на выходе в границах между пределами размягчения и плавления, за счет чего из экструдера выходит тонкая пленка. Потом она охлаждается, приобретая прочность листа или остается пленкой, обладающей большой пластичностью и свойством растяжения.

Температурные пределы использования пластиков

При выборе материала для производства деталей из пластмасс учитываются все температурные режимы его эксплуатации. Готовое изделие должно находиться в условиях, при которых до предела хрупкости и плавления остается зазор примерно в 20 — 30 С, но некоторые материалы рекомендуется использовать и при более значительных отклонениях от граничных значений.

Приведем конкретные примеры температурных границ размягчения, плавления и потери хрупкости для разных групп наиболее распространенных пластмасс.

Полиолефины — ПВД, ПНД, ППП

Полиолефины — большая категория, в которую входят полиэтилены, полипропилен и производные сополимеры, имеют широкий разброс температур. ПВД размягчается при 80 С, ПНД — при 130 С, полипропилен способен стать полностью пластичным при 95-100 С. Плавление начинается при дальнейшем нагреве соответственно до 105, 130 и 170 С. Хрупкость при охлаждении проявляется для ПВД при -70 С, ПНД — -60 С, полипропилена — от -8 до -15 С. Рабочие пределы температуры могут быть изменены при модификации, но это скажется на физических свойствах материала.

Пластики ПВХ и абс

Большой разброс значений критической для производства и эксплуатации имеют пластики на основе ПВХ иабс пластики. Пенопласт из ПВХ можно использовать в диапазоне температур от -70 С до +70 С, конкретные значения зависят от марки и состава. Пластик abs размягчается при нагреве до 95 — 120 С.

Вредные и безопасные пластмассы

Помимо температурных пределов обязательно учитывается и способность пластика гореть, затухать, выделять в воздух сажу (коптить) или незаметно наполнять помещение ядовитыми веществами при нагреве.

Какая температура размягчения и плавления поливинилхлорида (ПВХ)?

По этим свойствам можно отличить пластмассу, если по каким-то причинам на детали или фрагменте нет маркировки.

Нагревание ПЭТ

Широко распространенный ПЭТ, из которого делаются бутылки, начинает размягчаться уже при 60 С, а это значит, что в горячую воду попадет сильный яд сурьма и набор канцерогенов. Весь комплект опасных веществ будет выделяться и при горении такого пластика. При работе с такими материалами лучше использовать для повышения пластичности горячую воду, а при невозможности — работать с мощной вытяжкой.

Поведение полиэтиленов

HDPE, он же полиэтилен низкого давления (высокой плотности) считается одним из самых безопасных материалов при нагревании. В емкости из ПНД можно наливать подогретую воду и пищевое молоко. При температуре плавления около 130 С материал практически не выделяет в воздух и жидкости опасных веществ. LDPE или полиэтилен высокого давления (низкой плотности) плавится примерно при 90 С, поэтому его использование с горячей водой нежелательно. Материал относится к безопасным, не выделяющим в воздух и жидкости опасных компонентов.

Опасность ПВХ при нагреве

Серьезную опасность при нагревании несет ПВХ, который часто называют винилом. Плавить и жечь его нельзя, если нет специальной вытяжки. Материал размягчается при температуре около 60 С, выделяет свинец и диоксин, что и делает его весьма опасным составом. Использование ПВХ при комнатной температуре безопасно, но нагревать изделия выше 45 С без проветривания помещения или вытяжки не стоит, как и наливать в них горячие напитки.

Возврат к списку

Пластиковые панели: характеристики и преимущества.

Если стены внутри дома отличаются высокой бугристостью и существенными неровностями, то от штукатурки, скорее всего, придется отказаться. Мало того что на все это уйдет много раствора, что очень нежелательно для стен, так еще и сильно ударит по карману. Идеальная и более привлекательная альтернатива штукатурке и всем типам отделочных работ – это пластиковые панели.

По сравнению с гипсокартоном, пластиковые панели имеют ряд существенных преимуществ, делающих их по праву самым практичным и удобным материалом для внутренней отделки стен. Панели легко устанавливаются – на монтаж десяти квадратных метров сплошной стены уходит примерно три часа времени. Для монтажа не требуется каких-либо специальных инструментов и сложного оборудования. А при поверхностном ознакомлении и методами монтажа панелей их сможет установить даже неопытный человек…

Пластиковые панели многофункциональны. Без разницы, где вы их установите – на кухне или в спальне,- всюду они хорошо отмываются и не требуют большого ухода. Кроме того, панели устойчивы к резким изменениям температуры и механическим воздействиям, что делает их долговечными в службе.

Нет смысла говорить об огромном выборе панелей любого оформления – на ваш вкус. Панели бывают узкими и широкими, «сплошными» (отсутствуют стыки – стена будет сплошной) и «раздельными» (присутствуют стыки). Есть варианты любого цвета, с рисунком и без, со всевозможными узорами и абстрактными структурами. Проще говоря, - выбирай, не хочу.

Пластиковые панели отличают ряд эксплуатационных свойств. В первую очередь панели не боятся влаги. Благодаря этому ванную комнату теперь можно полностью отделать пластиком. Вам не придется возиться с дорогостоящей плиткой, нанимать бригады рабочих для облицовки стен. Все что требуется – это прибить к стенам и потолку рейки и поверх них уже установить панели.

Малый вес панелей – еще одно важное их преимущество перед всеми остальными материалами для обивки стен.

Температура плавления пластика

Вопреки всем нездоровым предрассудкам, материал изготовления пластиковых панелей пожаробезопасен. Для примера: температура плавления ПВХ составляет примерно 450 градусов Цельсия, тогда как просушенное дерево возгорается уже при 270-ти градусах. Помимо этого панели экологически безвредны, так как пластик, как вы знаете, нашел применение во всех сферах жизни и в упаковке.

Ценовая доступность – весьма весомое преимущество пластиковых панелей. Недорогие и красивые ПВХ-панели в силах превратить в комфортное помещение застаревшую и давно не ремонтированную комнату или кухню.

Важно знать, что обивка комнаты панелями повлечет небольшое уменьшение площади. Но зато все трубы, трещины, проводка и все остальное уйдут «в стену». И на ближайшие лет десять о ремонте можно будет совсем забыть.

Вернуться

Пластик с высокой температурой плавления

Главная » Статьи » Свойства пенопласта (горение, промерзание, нагрузки)

Свойства пенопласта

Пенополистирол (пенопласт) представляет собой полученный из полистирола и его производных газосодержащий материал, состоящий из спекшихся гранул с порами и пустотами между гранулами. Прочность материала напрямую зависит от его кажущейся плотности: чем плотнее, тем прочнее.

Пенопопласт применяется в строительстве как утеплитель, теплоизолятор, малогорючий (при условии обработки антипиренами) материал для оформления фасадов.

Каковы основные свойства пенополистирола?

К основным свойствам пенополистирола относятся:

  1. низкая паропроницаемость;
  2. водопоглащение (зависит от плотности материала), недопущение скопления влаги у стен, перемещение точки росы внутрь материала (все вместе позволяет эффективно использовать пенопласт в конструкциях с наружным утеплением мокрого типа);
  3. устойчивость к плесени, грибку, микроорганизмам и мху (образования колоний не зафиксировано);
  4. непитательность для грызунов (впрочем, они могут использовать пенопласт в качестве материала для подстилок или для стачивания зубов);
  5. долговечность (отсутствие потери качества минимум 60 лет, в благоприятных условиях от 80 лет);
  6. коэффициент термического расширения составляет от 5-10 до 7-10 (т.е. от 0,05 до 0,07 мм на 1м и 1 С), что должно учитываться при проектировании зданий в местах с сильными температурными скачками.

При какой температуре плавится пенопласт?

Температура эксплуатации пенополистирола составляет от -180 до +80 С, кратковременно до 95 С (выдерживает контакт с горчим битумом). Температура плавления пенополистирола составит 120 С (в этот момент происходят необратимая деполимеризация). Обработанный пенопласт может иметь различные точные данные по термостойкости, связанные с тем, какие именно пропитки применялись при производстве.

Используемый нами вариант обработки имеет горючесть по классу Г1 и не разрушается при температурном воздействии более чем на 65%.

Какую нагрузку выдерживает пенополистирол?

Пенополистирол выдерживает нагрузку в соответствии со своим классом плотности (и напрямую связанной с ней прочности) и бесконечное количество циклов нагрузок, если они не превышают 80% от максимально возможной прочности на сжатие для данного блока. В исследованиях использовались материалы с плотностью не выше 20-25 кг/м3, такой вариант облегченной конструкции наиболее удобен в эксплуатации и дает низкую нагрузку на несущие элементы.

В архитектуре существует только четыре ордена колонн Гюстав Флобер

Температура плавления пенопласта

Основная Утеплители Экструзионный, экструдированный пенополистирол

Экструдированный пенополистирол устойчив к действию большинства применяемых в строительных работах растворов солей, кислот и щелочей, масел, спиртов и спиртовых красителей. При взаимодействии с цементами и газами экструдированный пенополистирол не разрушается и не повреждается.

Наряду с этим его нужно оберегать от действия органических растворителей: бензина, керосина, солярки, альдегидов, кетонов и эфиров.

Создают экструдированный пенополистирол из гранулированного полистирола. Полистирольный гранулят загружают в экструдер, где он сперва плавится, а позже расплав под давлением продавливается через фильеру. Так как в один момент с гранулятом в экструдер загружают и порофор (порообразователь, к примеру, смесь двуокиси углерода СО2 и лёгких фреонов) в полистироле образуются замкнутые поры размером 0,1-0,2 мм. Закрытые поры делают экструзионный пенополистирол непроницаемым для капельной жидкости, пара, пыли и других веществ.

Кое-какие продавцы утеплителей, специализирующиеся на продаже экструдированного пенополистирола утверждают, что пенополистирол по большому счету и экструдированный пенополистирол в частности чуть ли не панацея от всех неприятностей в области теплоизоляции. Это само собой разумеется не так. Но нужно учитывать, что в отдельных случаях такое вывод возможно честным. Разумеется, что любой вид теплоизоляционных материалов имеет свои плюсы и минусы и соответственно имеет конкретные области применения, в которых его преимущества проявляются в наиболее полной мере.

К примеру, низкую паропроницаемость экструдированного пенополистирола возможно разглядывать как преимущество перед таким утеплителем как минеральная вата. дескать, теплоизоляция не продувается ветром, не пропускает влагу и не требует дополнительной гидроизоляции.

Но, в случае если взглянуть на обстановку иначе, это же свойство – недостаток. Утепление стенки экструдированным пенополистиролом перевоплотит помещение в тёплую баню с повышенной влажностью. Такая стенки не дышит.

Как же быть, что выбрать?

Решать вам. Принципиально важно только знать свойства выбранных теплоизоляционных материалов и понимать, как эти свойства отразятся на микроклимате в помещении. И в обязательном порядке учитывать в каком помещении будет работать утеплитель. Может произойти так, что данное конкретное свойство теплоизоляционного материала не имеет значения для данного конкретного помещения. Сказанное справедливо не только для экструдированного пенополистирола и не только для пенополистиролов в общем, но и для любых других теплоизоляционных материалов.

Цены экструдированного пенополистирола очень умеренны. И не смотря на то, что цена пенополистирола – несомненное его преимущество, не следует зацикливаться на низкой стоимости. Ни за что не нужно разглядывать цену экструдированного пенополистирола в отрыве от других его свойств. Имеете возможность быть уверены – у пенополистирола достаточно и других преимуществ…

Так отдельные виды экструдированного пенополистирола способны выдержать нагрузку до 35 тысячь киллограм на м. И в этом смысле экструдированный пенополистирол вне всяких сомнений превосходит кроме того самые твёрдые минераловатные плиты.

Производители теплоизоляционных материалов утверждают, что экструдированные пенополистиролы трудновоспламеняемы и отличаются склонностью к самозатуханию. Не верить им – оснований нет. В рецептуру современных экструдированных пенополистиролов не считая гранул полистирола в обязательном порядке входят добавки отбивающие у экструдированных пенополистиролов охоту гореть.

Но обольщаться не следует вследствие того что пенополистирол – полимер и как большая часть соединений этого славного рода легко плавится.

Не следует растолковывать, что по окончании плавления его поры слипаются и свойство экструдированных пенополистиролов термоизолировать что-либо исчезает начисто. Исходя из этого, кстати, экструдированные пенополистиролы и пенополистиролы по большому счету ни при каких обстоятельствах не применяют для теплоизоляции в широком смысле этого слова. Тут нужны кое-какие пояснения.

Термин теплоизоляция в отличие от термина утепление более широк. Утеплить свидетельствует не разрешить замёрзнуть. Представьте себе некоторый объект, которому предстоит находиться в среде отрицательных температур, к каким он не приспособлен. Его нужно утеплить. И в этом случае пенополистиролы в полной мере справляются с возложенными на него функциями.

Но довольно часто появляется обстановка обратная – некоторый объект очень сильно разогревается и необходимо не разрешить ему охлаждаться либо нагревать то, что около. И тут дело для экструдированных пенополистиролов обстоит не столь обнадёживающе.

По различным данным и для различных полистиролов температура его плавления лежит в промежутке 250-300°C. Наряду с этим вспененный полистирол плавится стремительнее, чем монолитный кусок полистирола, который тяжелее прогреть. Но уже при 250°C кроме того самые тугоплавкие полистиролы начинают попахивать и отнюдь не фиалками.

Эксперты нам растолкуют, дескать, полимер начинает разлагаться. А что образуется при разложении полистирола возможно предположить. Смогут, к примеру, выделяются пары стирола – некая бяка с бензольным кольцом в правом боку. Весьма не нужное для здоровья, нужно признать, соединение. И хорошо бы лишь это – стирол при больших температурах сам может разложиться. И что бы там ни выделилось в следствии – нужным оно точно не будет.

Другими словами, в случае если необходимо изолировать тёплый объект с температурой 200 и более градусов экструдированный пенополистирол для данной работы очевидно не подойдёт.

Не хорошо это либо нет?

Ставить вопрос так – не совсем корректно. Просто необходимо понимать, что любой теплоизоляционный материал имеет свои области применения и не использовать его там, где он не может полноценно работать.

Экструдированный пенополистирол используется в качестве теплоизоляции…

Температура плавления и размягчения пластиков, температура эксплуатации пластмасс

В последнее время пластмассы и пластики находят широкое применение в промышленности и быту. Поэтому часто возникает проблема выбора конкретного пластика под заданные температурные условия его эксплуатации . При выборе пластика необходимо учитывать диапазон его рабочей температуры или температуру начала размягчения и плавления пластика. Приведенная ниже таблица содержит все необходимые для этого данные.

В таблице представлены значения плотности ρ . температуры плавления пластика t пл . температуры размягчения по Вика t разм . температуры хрупкости t хр . а также интервал рабочей температуры t раб при которой допускается эксплуатация пластмасс.

Значения в таблице даны для более 270 наименований пластика. Для каждого пластика указана как минимум одна температура, позволяющая оценить допустимые температурные условия его эксплуатации. Рассмотрены следующие типы пластика и пластмасс: полиолефины, полистиролы, фторопласты, ПВХ, полиакрилаты, фенопласты, пенопласты, АБС-пластики. полиуретаны, смолы и компаунды, антифрикционные самосмазывающиеся пластики, стеклопластики и др.

К полиолефинам относятся такие пластмассы и пластики, как полиэтилен, полипропилен и сополимеры на их основе. Температура плавления полиэтилена имеет значение 105-135°С в зависимости от плотности, а диапазон температуры эксплуатации этого пластика составляет от -60 до 100°С. Высокопрочный полиэтилен низкого давления может эксплуатироваться при очень низких температурах: температура хрупкости этого пластика имеет значение минус 140°С.

Температура плавления полипропилена находится в диапазоне 164-170°С. При низких температурах этот пластик становится хрупким уже от минус 8°С. Среди других представителей полиолефинов необходимо отметить пластик, устойчивый к высоким температурам, на основе темплена. Этот пластик выдерживает температуру до 180-200°С и имеет морозостойкость -60-40°С.

Следует отметить режимы эксплуатации пластиков на основе ПВХ и abs-пластиков. Пенопласты на основе ПВХ имеют рабочую температуру от -70 до 70°С в зависимости от марки. Температура размягчения пластика abs равна 95-117°С.

К пластикам с высокой температурой плавления можно отнести фторопласты и полиамиды, а также термостойкий пластик ниплон. Например, температура плавления фторопласта составляет 327°С (для фторопласта-4 и 4Д). Полиамиды (капролон, капролит) имеют температуру размягчения 190-200°С, а температура плавления такой пластмассы составляет величину 215-220°С. Стекло- и углепластик ниплон имеет температуру плавления выше 300°С.

Из всего многообразия полимеров для эксплуатации при высоких температурах подойдут пластики на основе кремнийорганических смол. Максимальная температура эксплуатации такого пластика может достигать 700°С.

Плотность и характерные температуры пластика и пластмасс

За счет своей универсальности, дешевизны и долговечности — пластмасса нашла свое применение во всех сферах жизнедеятельности. Сегодня пластик — самый распространенный искусственный материал на планете. Он же первый и в списке мусора. Количество пластиковых отходов на планете достигает масштабов эпидемии. Многие ученые, изобретатели и предприниматели начали обращать внимание на данную проблему.

Промышленные машины для рециклинга (переработки) пластика, как правило, очень дороги и довольно сложны по конструкции. И, будем смотреть правде в глаза, в промышленных масштабах переработка пластика не окупается. Потому что производственный цикл — «сырье — пластиковое изделие » гораздо короче и дешевле, чем — «мусор — сортировка — пластиковое изделие — переработка — очистка — сырье — пластиковое изделие ». Поэтому-то фабрики по переработке пластиковых отходов есть не во всех городах мира. И массовое их появление не предвидятся в ближайшее время.

Получается, что ниша переработки пластика в домашних условиях открыта. И ждет тех, кто монетизирует ее с какой либо стороны. А простому человеку много не нужно. Ведь прелесть этой ниши в том, что бросовая пластмасса, по-сути — мусор, лежит у всех под ногами и никому не нужна. То есть, отличный и долговечный материал — бесплатно! Остается подобрать, переработать, в том или ином виде, и повторно использовать. А если результат не понравится — снова переработать!

Проект «Precious Plastic » помогает всем потребителям дать пластиковым отходам новую жизнь. Он предлагает всем желающим самостоятельно перерабатывать пластмассу при помощи бытовых автоматов, чертежи которых свободно распространяются в Интернете.

Данный проект, разработанный голландским дизайнером Дейвом Хаккенсом (Dave Hakkens) , показывает, что можно сделать, чтобы помочь остановить «пластиковую чуму» в окружающей среде.

Дейв, озаботившись проблемой пластмассовых отходов, нашел в интернете чертежи нескольких устройств, позволяющих каким-либо образом переработать пластмассу в домашних условиях. Собрав первые образцы, улучшив их, разработав модульную концепцию будущих устройств, Хаккенс создал международный проект «Precious Plastic ». В котором предлагает всем желающим собрать и использовать четыре простые, но эффективные машины по переработке пластика.

Применение аппаратов позволяет продлить срок службы различным пластиковым предметам быта, просто переработав их в другие. Ненужные в нужные. Посуда, искусственный ротанг, различные элементы интерьера — вот небольшой перечень предметов, которые можно сделать из бытовых пластиковых отходов при помощи этих машин.

Четыре устройства, в зависимости от типа и качества пластика, позволяют по разному перерабатывать его:

  • Шредер или измелчитель — устройство для измельчения пластиковых отходов в крошку для последующей обработки — нагрева;
  • Экструдер или выдавливатель — устройство, выдавливающее нагретую пластмассовую массу в виде жгута или ленты. То есть, получается искусственный ротанг или расходный материал для 3D-принтера.
  • Инжектор или впрыскиватель — нагревает полимерную крошку до пластичной массы и впрыскивает ее в нужную форму;
  • Пресс — пластиковая кроша под действием давления и высокой температуры прессуется в различные новые предметы.

Самое удивительное в проекте «Precious Plastic » то, что такие уникальные машины раздаются бесплатно. Точнее, чертежи устройства и инструкции по их сборке доступны всем желающим (чуть ниже будут видеоинструкции). Остается только собрать машины и начать на них зарабатывать.

Как заработать на переработке пластика в домашних условиях? Переработкой пластмассы и полимеров в домашних условиях!

Во-первых . Перерабатывая ненужный пластик в нужные пластмассовые изделия и реализовывать их как уникальные предметы handmade. Это самое простое и доступное решение.

Во-вторых . На основе машин Хаккенса открываются целые творческие лаборатории и коворкинги. Где любой желающий может придти со своими пластиковыми отходами, заплатить деньги, и поработать на аппаратах.

В-третьих . Помощь в сборке и реализации устройств. Не каждый может освоить чертежи устройств. И, тем более, собрать их. Но, они готовы купить собранные подобные машины. Почему бы не воспользоваться этим? Тем более аппараты в готовом виде стоят довольно дорого. Сборка, при наличие всего необходимого, займет не более месяца у любого рукастого мужика в гараже.

В-четвертых . У вас точно есть свои идеи!

Видео №1: как собрать шредер для измельчения пластмассы

Видео №2: как собрать экструдер для переработки пластика

Видео №3: как собрать инжектор для переработки пластмассы

Видео №4: как собрать пресс для переработки пластмассы

Итак, изучив видео — можно приступить к сборке устройств. Для более удобной работы предлагаем вам изучить чертежи на официальном сайте проекта . На английском языке.

Если устройства слишком сложные, можно посмотреть на простой способ домашней переработки пластиковых бутылок.

Бонус: простейшее устройство для резки пластиковых бутылок

На Кикстартере появился новый проект «Plastic Bottle Cutter », который дает потребителям возможность использовать пластиковые бутылки повторно.

Простейшее устройство (а в этом вы убедитесь, увидев фото ниже) позволяет превратить обычную пластиковую бутылку в пластиковую нить различной толщины, которую можно использовать по своему усмотрению.

Из данной нити можно сплести различные предметы — от маленьких корзин, до изящных элементов мебели.

Вообще, одноразовые пластиковые бутылки являются ценным ресурсом благодаря тому, что при их изготовлении используется пластик высочайшего качества. Но, это преимущество не берется в расчет большинством людей и бутылки просто выбрасываются. Темпы выкидывания бутылок растут с каждым днем. Таким образом, проблема эффективного повторного использования и переработки этих материалов просто необходимо и обязательно. Это позволит сократить масштабы загрязнения окружающей среды.

Вам понадобится

  • - емкость для плавления пластика;
  • - паяльник или паяльная станция;
  • - газовая горелка;
  • - промышленный фен;
  • - сварочный пистолет.

Инструкция

Прежде чем приступать к плавлению пластика, опробуйте его небольшой фрагмент. Не каждый вид пластмасс поддается плавлению в обычных , поэтому желательно выяснить это в ходе опыта. Кусочек материала прихватите щипцами или пинцетом и поднесите его к открытому или газовой горелки. Нагретый пластик будет либо медленно плавиться, либо сразу начнет гореть на открытом воздухе.

Убедившись в том, что пластик можно расплавить, измельчите исходный материал и поместите его в металлическую емкость, например, в жестяную банку. Для безопасности плавления материала, емкость с измельченным пластиком вставьте в другую посуду, имеющую большие размеры. Залейте в нее воду и поставьте всю конструкцию на огонь или плиту, сделав своеобразную водяную баню. Такой способ подходит для обработки пластика с низкой температурой плавления.

Для расплавления небольших кусков пластика используйте разогретое жало паяльника или газовую горелку. Если есть возможность, используйте паяльную станцию с встроенной регулировкой температуры нагрева жала. Нужную для плавления температуру подберите, исходя из эксперимента. Слишком высокая температура может привести к возгоранию материала или сделает пластик хрупким.

Для плавления пластика с повышенной прочностью используйте сварочный пистолет или промышленный фен. Порядок работы сварочным пистолетом указывается в технической документации к нему. Также набор включает в себя присадочные материалы, позволяющие сваривать различные виды пластмасс и пластика, например, оплавлять швы соединяемых изделий.

При обработке пластика высокими температурами соблюдайте меры предосторожности. Желательно все процедуры проводить на открытом воздухе, чтобы избежать отравления продуктами горения. Избегайте попадания расплава на открытые части тела и одежду, чтобы не допустить ожогов и порчи ткани.

Источники:

  • как обработать пластику

При поломке каких-либо пластмассовых деталей многие стараются самостоятельно их отремонтировать. Однако не у всех это получается. Поскольку при выборе способа соединения надо учитывать реологические свойства пластмасс и их тип: легкосвариваемые, трудносвариваемые или те, к которым вообще не применим способ сварки плавлением.

Инструкция

Можно использовать или полупрофессиональный фен, с плавной регулировкой температуры и потока . Дополнительно вам потребуются насадки для сварки. Для этого необходимо зачистить обе стороны сварного шва. Подберите присадочные прутки по - аналогичного материалу фрагмента. По возможности сделайте пробную сварку для проверки совместимости материалов, а также для подбора необходимой температуры , скорости движения фена и силы вдавливания. Прогрейте фен в течение 10 минут, чтобы стабилизировалась горячего воздуха.

Сложите фрагменты детали и закрепите в нужном положении с помощью специальных струбцин-прищепок. Заострите конец прутка, чтобы облегчить начальную стадию сварки. Наклоните пруток под углом 45° во время сварки, или воспользуйтесь насадкой для быстрой сварки. Использование насадки облегчает процесс сварки, поскольку она имеет фиксированные положения, как для прутка, так и для фена. В работе немного придавливайте пруток. В результате у вас должен получиться гладкий шов, немного возвышающийся над поверхностью. После полного остывания необходимо отшлифовать шов и покрасить, если это необходимо.

Связанная статья

Источники:

  • плавление пластмасс

Если у вас возникла необходимость соединить между собой пластиковые детали, не всегда нужно их склеивать. В некоторых случаях для соединения пластика его можно расплавить в нужном месте, а затем совместить части. При выборе типа соединения следует учитывать тип материала и способность его к соединению посредством такой импровизированной сварки.

Вам понадобится

  • - строительный фен;
  • - сварочный пистолет;
  • - паяльник (паяльная станция);
  • - присадочный пруток.

Инструкция

Определите, поддается ли пластик сварке путем расплавления. Пластмассы могут свариваться легко, с трудом или же вообще не поддаваться плавлению. Выяснить это можно опытным путем. Возьмите кусочек исследуемого материала, используя для этого плоскогубцы или пинцет, и нагрейте на открытом пламени. Проводите указанную процедуру на воздухе, чтобы избежать воздействия на дыхательные пути горения.

Если вы хотите расплавить пластиковую , разрежьте ее на кусочки и поместите в кастрюлю или другую емкость, а затем нагрейте на огне, сделав предварительно водяную баню. Размягченный пластик залейте в форму или обработайте им швы соединяемых изделий. При этом следует не только осторожность, но и быстро, иначе пластмасса преждевременно застынет.

Используйте для расплавления пластика жало паяльника. Удобнее использовать не обычный паяльник, а паяльную станцию, дающую возможность регулировать температуру нагрева жала. Требуемые температурные параметры подбираются также опытным путем на кусочках материала. При неаккуратном с паяльником существует риск испортить поверхность пластика или сделать шов излишне хрупким.

Если есть возможность, приобретите специальный сварочный , который плавит пластик и различные виды пластмасс. В наборе имеются также образцы материала, с помощью которых производится оплавление швов и соединений. Порядок действий при пользовании и меры безопасности при обращении с ним изложены в инструкции к прибору.

Для некоторых видов пластика можно использовать фен, позволяющий нагревать материал до требуемой температуры. Предварительно очистите соединяемые поверхности по обе стороны от будущего шва. Выберите необходимую насадку и присадочный пруток. Желательно сделать пробное расплавление пластика и , насколько соединяемые материалы совместимы.

Прогрейте фен для стабилизации температуры. Закрепите соединяемые посредством плавки детали, используя тиски или струбцины. Чтобы процесс плавления шел быстрее, заострите конец присадочного прутка. Сварите детали, расплавив их феном, слегка придавливая при этом пруток к расплавляемым поверхностям. После застывания расплава поверхность шва обработайте, придав ей гладкий вид.

Пластиковые бутылки служат универсальной тарой для жидкости. Они обладают преимуществом перед стеклянной тарой за счет своей упругости и большего объема. Впервые пластиковые емкости появились в США в 1970 и с тех пор получили широкое распространение по всему миру.

В современных автомобилях доля пластмассовых деталей постоянно растет. Растет и количество ремонтов на пластмассовых поверхностях, все чаще мы сталкиваемся с необходимостью их окрашивания.

Во многом окраска пластмасс отличается от окраски металлических поверхностей, что обусловлено, в первую очередь, самими свойствами пластмасс: они более эластичны и имеют меньшую адгезию к ЛКМ. А так как спектр полимерных материалов, применяемых в автомобилестроении, очень разнообразен, то не будь каких-то универсальных ремонтных материалов, способных создавать качественное декоративное покрытие на многих из их типов, малярам бы, наверное, пришлось получать специальное образование по химии.

К счастью, все на самом деле окажется значительно проще и погружаться с головой в изучение молекулярной химии полимеров нам не придется. Но все же некоторые сведения о типах пластмасс и их свойствах, хотя бы с целью расширения кругозора, будут явно нелишними.

Сегодня вы узнаете

Пластмассы — в массы

В XX веке человечество пережило синтетическую революцию, в его жизнь вошли новые материалы — пластмассы. Пластмассу можно смело считать одним из главных открытий человечества, без ее изобретения многие другие открытия были бы получены намного позже или их не было бы вовсе.

Первая пластмасса была изобретена в 1855 году британским металлургом и изобретателем Александром Парксом. Когда он решил найти дешевый заменитель дорогостоящей слоновой кости, из которой в то время делались бильярдные шары, вряд ли он мог себе представить, какое значение впоследствии приобретет полученный им продукт.

Ингредиентами будущего открытия стала нитроцеллюлоза, камфора и спирт. Смесь этих компонентов прогревалась до текучего состояния, а затем заливалась в форму и застывала при нормальной температуре. Так на свет появился паркезин — прародитель современных пластических масс.

От природных и химически модифицированных природных материалов к полностью синтетическим молекулам развитие пластмасс пришло несколько позже — когда профессор Фрейбургского университета немец Герман Штаудингер открыл макромолекулу — тот «кирпичик», из которого строятся все синтетические (да и природные) органические материалы. Это открытие принесло в 1953 году 72-летнему профессору Нобелевскую премию.

С тех-то пор все и началось… Чуть ли не ежегодно из химических лабораторий шли сообщения об очередном синтетическом материале с новыми, невиданными свойствами, и сегодня в мире ежегодно производятся миллионы тонн всевозможных пластических масс, без которых жизнь современного человека абсолютно немыслима.

Пластмассы используются везде, где только можно: в обеспечении комфортной жизнедеятельности людей, сельском хозяйстве, во всех областях промышленности. Не исключением является и автомобилестроение, где пластик используется все шире, неудержимо вытесняя своего основного конкурента — металл.

По сравнению с металлами пластмассы — очень молодые материалы. Их история не насчитывает и 200 лет, в то время как олово, свинец и железо были были знакомы человечеству еще в глубокой древности — за 3000-4000 лет до н. э. Но несмотря на это, полимерные материалы по ряду показателей значительно превосходят своего основного технологического конкурента.

Преимущества пластмасс

Преимущества пластмасс по сравнению с металлами очевидны.

Во-первых, пластик существенно легче. Это позволяет снизить общий вес автомобиля и сопротивление воздуха при движении, и тем самым — уменьшить расход топлива и, как следствие, выброс выхлопных газов.

Общее снижение веса автомобиля на 100 кг за счет применения пластмассовых деталей позволяет экономить до одного литра топлива на 100 км.

Во-вторых, использование пластмасс дает почти неограниченные возможности для формообразования, позволяя воплощать в реальность любые дизайнерские идеи и получать детали самых сложных и хитроумных форм.

К преимуществам пластмасс также можно отнести их высокую коррозионную стойкость, устойчивость к атмосферным воздействиям, кислотам, щелочам и прочим агрессивным продуктам химии, отличные электро- и теплоизоляционные свойства, высокий коэффициент шумоподавления… Словом, неудивительно, почему полимерные материалы находят столь широкое применение в автомобилестроении.

Предпринимались ли попытки создать полностью пластмассовый автомобиль? А как же! Вспомнить хотя бы небезызвестный «Трабант», выпускавшийся в Германии более 40 лет назад на заводе в Цвик-кау — его кузов был целиком изготовлен из слоистого пластика.

Для получения этого пластика 65 слоев очень тонкой хлопчатобумажной ткани (поступавшей на завод с текстильных фабрик), чередующихся со слоями размолотой крезолоформальдегидной смолы, спрессовывались в очень прочный материал толщиной 4 мм при давлении 40 атм. и температуре 160 °С в течение 10 мин.

До сих пор кузова гэдээровских «Трабантов», про которые пели песни, рассказывали легенды (но чаще сочиняли анекдоты), лежат на многих свалках страны. Лежат… но ведь не ржавеют!

Trabant. Самый популярный в мире автомобиль из пластика

Шутки шутками, а перспективные разработки цельнопластмассовых кузовов серийных авто есть и сейчас, многие кузова спортивных автомобилей целиком изготавливаются из пластика. Традиционно металлические детали (капоты, крылья) на многих автомобилях сейчас также меняют на пластиковые, например, у автомобилей Citroën, Renault, Peugeot и других.

Вот только в отличие от кузовных панелей народного «Траби», пластиковые детали современных автомобилей уже не вызывают иронической улыбки. Напротив — их стойкость к ударным нагрузкам, способность деформированных участков к самовосстановлению, высочайшая антикоррозионная стойкость и малый удельный вес заставляют проникнуться к этому материалу глубоким уважением.

Завершая разговор о достоинствах пластмасс нельзя не отметить тот факт, что хоть и с некоторыми оговорками, но все-таки большинство из них отлично поддается окрашиванию. Не имей серая полимерная масса такой возможности, вряд ли бы она снискала такую популярность.

Зачем красить пластик?

Необходимость окрашивания пластмасс обусловлена с одной стороны эстетическими соображениями, а с другой — необходимостью защищать пластики. Ведь ничего вечного нет. Пластики хоть и не гниют, но в процессе эксплуатации и воздействия атмосферных влияний, они все равно повергаются процессам старения и деструкции. А нанесенный лакокрасочный слой защищает поверхность пластика от различных агрессивных воздействий и, следовательно, продлевает срок его службы.

Если в условиях производства окрашивание пластмассовых поверхностей производится очень просто — в данном случае речь идет о большом количестве новых одинаковых деталей из одной и той же пластмассы (да и технологии там свои), то маляр в авторемонтной мастерской сталкивается с проблемами разнородности материалов различных деталей.

Вот здесь то и приходится ответить себе на вопрос: «Что вообще такое пластмасса? Из чего ее делают, каковы ее свойства и основные виды?».

Что такое пластмасса?

В соответствии с отечественным государственным стандартом:

Пластмассами называются материалы, основной составной частью которых являются такие высокомолекулярные органические соединения, которые образуются в результате синтеза или же превращений природных продуктов. При переработке в определенных условиях они, как правило, проявляют пластичность и способность к формованию или
деформации.

Если из такого сложного даже для чтения, а не только для понимания, описания убрать первое слово «пластмассами», пожалуй, вряд ли кто догадается, о чем вообще идет речь. Что ж, попробуем немного разобраться.

«Пластмассы» или «пластические массы» назвали так потому, что эти материалы способны при нагреве размягчаться, становиться пластичными, и тогда под давлением им можно придать определенную форму, которая при дальнейшем охлаждении и отверждении сохраняется.

Основу любой пластмассы составляет (то самое «высокомолекулярное органическое соединение» из определения выше).

Слово «полимер» происходит от греческих слов «поли» («много») и «мерос» («части» или «звенья»). Это вещество, молекулы которого состоят из большого числа одинаковых, соединенных между собой звеньев. Эти звенья называют мономерами («моно» — один).

Так, например, выглядит мономер полипропилена, наиболее применяемого в автомобилестроении типа пластика:

Молекулярные цепи полимера состоят из практически бесчисленного числа таких кусочков, соединенных в единое целое.

Цепочки молекул полипропилена

По происхождению все полимеры делят на синтетичес­кие и природные . Природные полимеры составляют основу всех животных и растительных организмов. К ним относят полисахариды (целлюлоза, крахмал), белки, нуклеиновые кислоты, натуральный каучук и другие вещества.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство пластмасс являются синтетическими.

Синтетические полимеры получают в процессе химического синтеза из соответствующих мо­номеров.

В качестве исходного сырья обычно применяются нефть, природный газ или уголь. В результате химической реакции полимеризации (или поликонденсации) множество «маленьких» мономеров исходного вещества соединяются между собой, будто бусины на ниточке, в «огромные» молекулы полимера, который затем формуют, отливают, прессуют или прядут в готовое изделие.

Так, например, из горючего газа пропилена получают пластик полипропилен, из которого делают бамперы:

Теперь вы наверное догадались, откуда берутся названия пластмасс. К названию мономера добавляется приставка «поли-» («много»): этилен → полиэтилен , пропилен → полипропилен , винилхлорид → поливинилхлорид и т.д.

Международные краткие обозначения пластмасс являются аббревиатурами их химических наименований. Например, поливинилхлорид обозначают как PVC (Polyvinyl chloride), полиэтилен — PE (Polyethylene), полипропилен — PP (Polypropylene).

Кроме полимера (его еще называют связующим) в состав пластмасс могут входить различные наполнители, пластификаторы, стабилизаторы, красители и другие вещества, обеспечивающие пластмассе те или иные технологические и потребительские свойства, например текучесть, пластичность, плотность, прочность, долговечность и т.д.

Виды пластмасс

Пластмассы классифицируют по разным критериям: химическому составу, жирности, жесткости. Но главным критерием, который объясняет природу полимера, является характер поведения пластика при нагревании. По этому признаку все пластики делятся на три основные группы:

  • термопласты;
  • реактопласты;
  • эластомеры.

Принадлежность к той или иной группе определяют форма, величина и расположение макромолекул, наряду с химическим составом.

Термопласты (термопластичные полимеры, пластомеры)

Термопласты — это пластмассы, которые при нагреве плавятся, а при охлаждении возвращаются в исходное состояние.

Эти пластмассы состоят из линейных или слегка разветвленных молекулярных цепей. При невысоких температурах молекулы располагаются плотно друг возле друга и почти не двигаются, поэтому в этих условиях пластмасса твердая и хрупкая. При небольшом повышении температуры молекулы начинают двигаться, связь между ними ослабевает и пластмасса становится пластичной. Если нагревать пластмассу еще больше, межмолекулярные связи становятся еще слабее и молекулы начинают скользить относительно друг друга — материал переходит в эластичное, вязкотекучее состояние. При понижении температуры и охлаждении весь процесс идет в обратном порядке.

Если не допускать перегрева, при котором цепи молекул распадаются и материал разлагается, процесс нагревания и охлаждения можно повторять сколько угодно раз.

Это особенность термопластов многократно размягчаться позволяет неоднократно перерабатывать эти пластмассы в те или иные изделия. То есть теоретически, из нескольких тысяч стаканчиков из-под йогурта можно изготовить одно крыло. С точки зрения защиты окружающей среды это очень важно, поскольку последующая переработка или утилизация — большая проблема полимеров. Попав в почву, изделия из пластика разлагаются в течение 100–400 лет!

Кроме того, благодаря этим свойствам термопласты хорошо поддаются сварке и пайке. Трещины, изломы и деформации можно легко устранить посредством теплового воздействия.

Большинство полимеров, применяемых в автомобилестроении, являются именно термопластами. Используются они для производства различных деталей интерьера и экстерьера автомобиля: панелей, каркасов, бамперов, решеток радиатора, корпусов фонарей и наружных зеркал, колпаков колес и т.д.

К термопластам относятся полипропилен (РР), поливинихлорид (PVC), сополимеры акрилонитрила, бутадиена и стирола (ABS), полистирол (PS), поливинилацетат (PVA), полиэтилен (РЕ), полиметилметакрилат (оргстекло) (РММА), полиамид (РА), поликарбонат (PC), полиоксиметилен (РОМ) и другие.

Реактопласты (термореактивные пластмассы, дуропласты)

Если для термопластов процесс размягчения и отверждения можно повторять многократно, то реактопласты после однократного нагревания (при формовании изделия) переходят в нерастворимое твердое состояние, и при повторном нагревании уже не размягчаются. Происходит необратимое отверждение.

В начальном состоянии реактопласты имеют линейную структуру макромолекул, но при нагревании во время производства формового изделия макромолекулы «сшиваются», создавая сетчатую пространственную структуру. Именно благодаря такой структуре тесно сцепленных, «сшитых» молекул, материал получается твердым и неэластичным, и теряет способность повторно переходить в вязкотекучее состояние.

Из-за этой особенности термореактивные пластмассы не могут подвергаться повторной переработке. Также их нельзя сваривать и формовать в нагретом состоянии — при перегреве молекулярные цепочки распадаются и материал разрушается.

Эти материалы являются достаточно термостойкими, поэтому их используют, например, для производства деталей картера в подкапотном пространстве. Из армированных (например стекловолокном) реактопластов производят крупногабаритные наружные кузовные детали (капоты, крылья, крышки багажников).

К группе реактопластов относятся материалы на основе фенол-формальдегидных (PF), карбамидо-формальдегидных (UF), эпоксидных (EP) и полиэфирных смол.

Эластомеры — это пластмассы с высокоэластичными свойствами. При силовом воздействии они проявляют гибкость, а после снятия напряжения возвращают исходную форму. От прочих эластичных пластмасс эластомеры отличаются способностью сохранять свою эластичность в большом температурном диапазоне. Так, например, силиконовый каучук остается упругим в диапазоне температур от -60 до +250 °С.

Эластомеры, так же как и реактопласты, состоят из пространственно-сетчатых макромолекул. Только в отличие от реактопластов, макромолекулы эластомеров расположены более широко. Именно такое размещение обуславливает их упругие свойства.

В силу своего сетчатого строения эластомеры неплавки и нерастворимы, как и реактопласты, но набухают (реактопласты не набухают).

К группе эластомеров относятся различные каучуки, полиуретан и силиконы. В автомобилестроении их используют преимущественно для изготовления шин, уплотнителей, спойлеров и т.д.

В автомобилестроении используются все три типа пластиков. Также выпускаются смеси из всех трех видов полимеров — так называемые «бленды» (blends), свойства которых зависят от соотношения смеси и вида компонентов.

Определение типа пластика. Маркировка

Любой ремонт пластиковой детали должен начинаться с идентификации типа пластмассы, из которой изготовлена деталь. Если в прошлом это давалось не всегда просто, то сейчас «опознать» пластик легко — все детали, как правило, маркируются.

Обозначение типа пластмассы производители обычно выштамповывают с внутренней стороны детали, будь то бампер или крышка мобильного телефона. Тип пластика, как правило, заключен в характерные скобки и может выглядеть следующим образом: >PP/EPDM<, >PUR<, .

Контрольное задание : снимите крышку своего мобильного телефона и посмотрите из какого типа пластмассы он сделан. Чаще всего это >PC<.

Вариантов подобных аббревиатур может быть множество. Все рассмотреть мы не сможем (да и нет в том необходимости), поэтому остановимся на нескольких наиболее распространенных в автомобилестроении типах пластмасс.

Примеры наиболее распространенных в автомобилестроении типов пластика

Полипропилен — РР, модифицированный полипропилен — PP/EPDM

Самый распространенный в автомобилестроении тип пластика. В большинстве случаев при ремонте поврежденных или окраске новых деталей нам придется иметь дело именно с различными модификациями полипропилена.

Полипропилен обладает, пожалуй, совокупностью всех преимуществ, какими только могут обладать пластмассы: низкой плотностью (0,90 г/см³ — наименьшее значение для всех пластмасс), высокой механической прочностью, химической стойкостью (устойчив к разбавленным кислотам и большинству щелочей, моющим средствам, маслам, растворителям), термостойкостью (начинает размягчаться при 140°C, температура плавления 175°C). Он почти не подвергается коррозионному растрескиванию, обладает хорошей способностью к восстановлению. Кроме того, полипропилен является экологически чистым материалом.

Характеристики полипропилена дают повод считать его идеальным материалом для автомобильной промышленности. За свои столь ценные свойства он даже получил титул «короля пластмасс».

На основе полипропилена изготовлены практически все бампера, также этот материал используется при изготовлении спойлеров, деталей салона, приборных панелей, расширительных бачков, решеток радиатора, воздуховодов, корпусов и крышек аккумуляторных батарей и т.д. В быту даже чемоданы изготавливаются из полипропилена.

При литье большинства вышеперечисленных деталей используется не чистый полипропилен, а его различные модификации.

«Чистый» немодифицированный полипропилен очень чувствителен к ультрафиолетовому излучению и кислороду, он быстро теряет свои свойства и становится хрупким при эксплуатации. По этой же причине нанесенные на него лакокрасочные покрытия не могут иметь долговечной адгезии.

Введенные же в полипропилен добавки — чаще в виде резины и талька — значительно улучшают его свойства и дают возможность его окрашивать.

Окрашиванию поддается только модифицированный полипропилен. На «чистом» полипропилене адгезия будет очень слабой! Из чистого полипропилена >РР< изготавливают бачки омывателей, расширительные емкости, одноразовую посуду, стаканчики и т.д.

Любые модификации полипропилена, какой бы длинной не была аббревиатура его маркировки, первыми двумя буквами обозначен все равно, как >РР…<. Наиболее распространенный продукт этих модификаций — >PP/EPDM< (сополимер полипропилена и этиленпропиленового каучука).

ABS (сополимер акрилонитрила, бутадиена и стирола)

ABS — эластичный, но в тоже время ударопрочный пластик. За эластичность отвечает составляющая каучука (бутадиена), за прочность — акрилонитрил. Этот пластик чувствителен к ультрафиолетовому излучению — под его воздействием пластик быстро стареет. Поэтому изделия из ABS нельзя долго держать на свету и нужно обязательно окрашивать.

Чаще всего используется для производства корпусов фонарей и наружных зеркал, решеток радиатора, облицовки приборной панели, обивки дверей, колпаков колес, задних спойлеров и т. п.

Поликарбонат — PC

Один из наиболее ударопрочных термопластов. Чтобы понять, насколько прочен поликарбонат, достаточно того факта, что это материал используется при изготовлении пуленепробиваемых банковских стоек.

Помимо прочности поликарбонаты характеризуются легкостью, стойкостью к световому старению и перепадам температур, пожаробезопасностью (это трудно воспламеняющийся самозатухающий материал).

К сожалению, поликарбонаты достаточно чувствительны к воздействию растворителей и имеют склонность к растрескиванию под воздействием внутренних напряжений.

Не подходящие агрессивные растворители могут серьезно ухудшать прочностные характеристики пластика, поэтому при покраске деталей, где прочность имеет первостепенное значение (например мотоциклетного шлема из поликарбоната) нужно быть особенно внимательными и четко следовать рекомендациям производителя, а иногда даже принципиально отказываться от окрашивания. Зато спойлеры, решетки радиатора и панели бамперов из поликарбоната можно красить без проблем.

Полиамиды — PA

Полиамиды — жесткие, прочные и при этом эластичные материалы. Детали из полиамида выдерживают нагрузки, близкие к нагрузкам, допустимым для цветных металлов и сплавов. Полиамид обладает высокой стойкостью к износу, химической устойчивостью. Он почти невосприимчив к большинству органических растворителей.

Чаще всего полиамиды используют для производства съемных автомобильных колпаков, различных втулок и вкладышей, хомутов трубок, языков замка дверей и защелок.

Полиуретан — PU, PUR

До широкого внедрения в производство полипропилена, полиуретан был самым популярным материалом для изготовления различных эластичных деталей автомобиля: рулевых колес, грязезащитных чехлов, покрытия для педалей, мягких дверных ручек, спойлеров и т.д.

У многих этот тип пластика ассоциируется с маркой Mercedes. Бамперы, боковые накладки дверц, порогов практически на всех моделях изготавливались до недавнего времени из полиуретана.

Производство деталей из этого типа пластмассы требует менее сложного оборудования чем для полипропиленовых. В настоящее время многие частные компании, как за рубежом, так и в странах бывшего Союза предпочитают работать именно с этим типом пластика для изготовления всевозможных деталей для тюнинга автомобилей.

Стеклопластики — SMC, BMC, UP-GF

Стеклопластики являются одним из важнейших представителей так называемых «армированных пластиков». Они изготавливаются на базе эпоксидных или полиэфирных смол (это реактопласты) со стеклотканью в качестве наполнителя.

Высокие физико-механические показатели, а также стойкость к воздействию различных агрессивных сред определили широкое применение этих материалов во многих областях промышленности. Всем известный продукт, используемый в производстве кузовов американских минивэнов.

При изготовлении изделий из стеклопластика возможно применение технологии типа «сэндвич», когда детали состоят из нескольких слоев различных материалов, каждый из которых отвечает определенным требованиям (прочности, химстойкости, абразивоустойчивости).

Легенда о неизвестном пластике

Вот мы держим в руках пластиковую деталь, не имеющую на себе никаких опознавательных знаков, никакой маркировки. Но нам позарез нужно выяснить ее химический состав или хотя бы тип — термопласт это или реактопласт.

Потому что, если речь идет, например, о сварке, то она возможна лишь с термопластами (для ремонта термореактивных пластмасс применяются клеевые композиции). Кроме того, свариваться могут только одноименные материалы, разнородные просто не взаимодействуют. В связи с этим возникает необходимость идентифицировать пластик «no name», чтобы правильно подобрать ту же сварочную присадку.

Идентификация типа пластика — задача непростая. Анализ пластмасс производится в лабораториях по различным показателям: по спектрограмме сгорания, реакции на различные реактивы, запаху, температуре плавления и так далее.

Тем не менее, существует несколько простейших тестов, позволяющих определить приблизительный химический состав пластика и отнести его к той или иной группе полимеров. Один из таких — анализ поведения образца пластика в открытом источнике огня.

Для теста нам понадобится проветриваемое помещение и зажигалка (или спички), с помощью которой нужно осторожно поджечь кусочек испытуемого материала. Если материал плавится, значит мы имеем дело с термопластом, если не плавится — перед нами реактопласт.

Теперь убираем пламя. Если пластик продолжает гореть, то это может быть ABS-пластик, полиэтилен, полипропилен, полистирол, оргстекло или полиуретан. Если гаснет — скорее всего это поливинилхлорид, поликарбонат или полиамид.

Далее анализируем цвет пламени и запах, образующийся при горении. Например, полипропилен горит ярким синеватым пламенем, а его дым имеет острый и сладковатый запах, похожий на запах сургуча или жженной резины. Слабым синеватым пламенем горит полиэтилен, а при затухании пламени чувствуется запах горящей свечи. Полистирол горит ярко, и при этом сильно коптит, а пахнет довольно приятно — у него сладковатый цветочный запах. Поливинилхлорид, наоборот, пахнет неприятно — хлором или соляной кислотой, а полиамид — горелой шерстью.

Кое-что о типе пластика может сказать и его внешний вид. Например, если на детали наблюдаются явные следы сварки, то оно наверняка изготовлено из термопласта, а если имеются следы снятых наждаком заусенцев, значит это термореактивная пластмасса.

Также можно провести тест на твердость: попробовать срезать небольшой кусочек пластмассы ножом или лезвием. С термопласта (он более мягкий) стружка будет сниматься, а вот реактопласт будет крошиться.

Или еще один способ: погружение пластика в воду. Этот метод позволяет довольно просто определить пластики, входящие в группу полиолефинов (полиэтилен, полипропилен и др.). Эти пластмассы будут плавать на поверхности воды, так как их плотность почти всегда меньше единицы. Другие полимеры имеют плотность больше единицы, поэтому они будут тонуть.

Эти и другие признаки, по которым можно определить тип пластика, представлены ниже в виде таблицы.

P.S. В мы уделим внимание вопросам подготовки и покраски пластиковых деталей.

Бонусы

Полноразмерные версии изображений откроются в новом окне при нажатии на картинку!

Расшифровка обозначения пластмасс

Обозначения наиболее распространенных пластиков

Классификация пластиков в зависимости от жесткости

Основные модификации полипропилена и области их применения в автомобиле

Методы определения типа пластмассы

Деталей вы можете обрезать и оттачивать каждую из них вручную, но данная методика весьма несовершенна: она занимает много сил, а получить два абсолютно одинаковых изделия невозможно. Поэтому в данном материале вы узнаете, как осуществить литье пластмасс в домашних условиях.

Что нам может понадобиться

Для собственноручного литья пластмассы нам не нужно каких-либо особенным инструментов или материалов. Шаблонную модель, своего рода матрицу, мы можем сделать практически из чего угодно — из металла, картона или же дерева. Но вне зависимости от того, какой вариант вы выбрали, его в любом случае необходимо пропитать специальным раствором еще до начала работы. В особенности это касается дерева и бумаги, ведь они активно впитывают влагу и для предотвращения этого процесса нам нужно заполнить поры, желательно жидким воском.

Силикон.

Если мы остановились на этом варианте, то следует покупать его с наименьшей вязкостью — это поспособствует лучшей обтекаемости детали. Разумеется, результаты будут более точными. На современном рынке присутствует великое множество его сортов, и сравнивать их между собой не имеет смысла: у нас нет для этого ни времени, ни возможности. Можем лишь с уверенностью сказать, что для обмазки идеально подойдёт герметик для автомобилей, желательно красный. С ним лить пластмассу на дому будет значительно проще.

Определяемся с литьевым материалом

Честно говоря, материалов для литья существует еще больше, чем силиконовых сортов. Среди них есть и жидкая пластмасса, и обычный гипс, перемешанный с клеем ПВА, и даже полиэфирная смола. Несколько меньшей популярностью пользуются вещества для холодной сварки, легкоплавящиеся металлы и так далее. Но в нашем случае мы будем основываться на некоторых других характеристиках веществ для литья:

  • Срок их работы.
  • Вязкость.

Касательно первого пункта, то он обозначает время, на протяжении которого мы можем осуществлять манипуляции с еще незатвердевшим материалом. Конечно же, если изготовление пластмассовых изделий происходит в заводских условиях, то двух минут будет более чем достаточно. Ну а нам, делающим это дома, необходимо как минимум пять минут. И если случилось так, что подходящих материалов вы не смогли достать, то их вполне можно заменить простой смолой эпоксидной. Где ее искать? В автомагазинах или же в магазинах для поклонников авиамоделирования. Кроме того, такая смола нередко встречается в обычных хозяйственных магазинах.

Делаем разрезную форму

Подобная идеально подойдет для того, чтобы лить пластмассу своими руками, ведь в нее можно заливать необычные типы смол. Маленькой хитростью подобной методики можно считать то, что на предварительном этапе всю поверхность модели нужно обработать силиконом, а затем, после того, как материал целиком затвердеет, матрицу можно обрезать. После этого мы извлекаем ее «внутренности», которые пригодятся нам для дальнейшей отливки. Дабы нам подошла форма, следует нанести трехмиллиметровый слой герметика, после чего мы просто ждем, пока материал затвердеет — обычно на это уходит два часа. При этом наносить его желательно кисточкой. Нанося первый слой, мы должны попытаться заполнить материалом все неровности или пустоты, дабы впоследствии не образовывались воздушные пузыри.

Как происходит процесс литья

Первый шаг.

Берем форму для литья и тщательно ее очищаем — она должна быть сухой и чистой. Все остатки материала, оставшиеся после предварительных процедур, обязательно следует удалить.

Второй шаг.

Если возникнет необходимость, мы можем несколько изменить цвет нашего состава: для этого нужно всего лишь добавить в него одну капельку краски, но ни в коем случае не водяной (у жидких пластмасс к ним личная неприязнь).

Третий шаг.

Нет необходимости в проведении дегазации нашей литьевой смеси. Это можно объяснить тем, что литье пластмасс в домашних условиях изначально предусматривает относительную непродолжительность ее «жизни». Вместе с тем, для того, чтобы извлекать пузырьки воздуха из малогабаритных изделий, на необходимо всего лишь собственноручно вывести их после заливания.

Четвертый шаг.

Тщательным образом перемешиваем все необходимые составляющие и заливаем ее в форму шаблона медленно, тонкой струей. Это следует делать до тех пор, пока смесь не заполнит собой весь объем и еще некоторую долю канала для литья. И вскоре, когда произойдет процедура дегазации, объем этого материала значительно уменьшится и станет таким, какой нам и нужен.

И последний совет: для того чтобы качество модели было высоким, охлаждать шаблоне нужно постепенно, не спеша. Итак, соблюдайте все инструкции и все у вас получится!

Loading...Loading...