Расчет потерь энергии в сетях. Методы расчета потерь электроэнергии

Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения. Собранная в статье информация описывает многие аспекты этой непростой задачи.

Виды и структура потерь

Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:

  • Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
  • Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
  • Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.

Ниже представлен среднестатистический график потерь типовой электрокомпании.

Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.


Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.

Основные причины потерь электроэнергии

Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:

  1. Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
  • Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
  • Расход в трансформаторах, имеющий магнитную и электрическую природу (). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.

Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.

  1. Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
  • Холостая работа силовых установок.
  • Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
  • Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.

Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.

Расходы на поддержку работы подстанций

К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:

  • системы вентиляции и охлаждения трансформаторного оборудования;
  • отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
  • освещение прилегающих к подстанциям территорий;
  • зарядное оборудование АКБ;
  • оперативные цепи и системы контроля и управления;
  • системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
  • различные виды компрессорного оборудования;
  • вспомогательные механизмы;
  • оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.

Коммерческая составляющая

Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.

К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:

  • в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
  • неправильно указанный тариф;
  • отсутствие контроля за данными приборов учета;
  • ошибки, связанные с ранее откорректированными счетами и т.д.

Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.

Различают три способа хищения (занижения показаний прибора учета):

  1. Механический . Под ним подразумевается соответствующее вмешательство в работу прибора. Это может быть притормаживание вращения диска путем прямого механического воздействия, изменение положения электросчетчика, путем его наклона на 45° (для той же цели). Иногда применяется более варварский способ, а именно, срываются пломбы, и производится разбалансирование механизма. Опытный специалист моментально обнаружит механическое вмешательство.
  2. Электрический . Это может быть как незаконное подключение к воздушной линии путем «наброса», метод инвестирования фазы тока нагрузки, а также использование специальных приборов для его полной или частичной компенсации. Помимо этого есть варианты с шунтированием токовой цепи прибора учета или переключение фазы и нуля.
  3. Магнитный . При данном способе к корпусу индукционного прибора учета подносится неодимовый магнит.

Практически все современные приборы учета «обмануть» вышеописанными способами не удастся. Мало того, подобные попытки вмешательства могут быть зафиксированы устройством и занесены в память, что приведет к печальным последствиям.

Понятие норматива потерь

Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.

Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.

Кто платит за потери электричества?

Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.

Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.

Способы уменьшения потерь в электрических сетях

Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:

  • Оптимизация схемы и режима работы электросети.
  • Исследование статической устойчивости и выделение мощных узлов нагрузки.
  • Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
  • Оптимизация нагрузки трансформаторов.
  • Модернизация оборудования.
  • Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.

Уменьшить коммерческие затраты можно следующим образом:

  • регулярный поиск несанкционированных подключений;
  • создание или расширение подразделений, осуществляющих контроль;
  • проверка показаний;
  • автоматизация сбора и обработки данных.

Методика и пример расчета потерь электроэнергии

На практике применяют следующие методики для определения потерь:

  • проведение оперативных вычислений;
  • суточный критерий;
  • вычисление средних нагрузок;
  • анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
  • обращение к обобщенным данным.

Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.

В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.


Расчет потерь в силовом трансформаторе

Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.


Теперь переходим к расчету.

Актуальным вопросом в современной электроэнергетике являются потери электроэнергии, которые тесно переплетаются с финансовой составляющей. Это своего рода резерв получения дополнительной выгоды, повышение рентабельности производственного процесса. Попытаемся разобраться со всеми гранями этого вопроса и дать четкое представление о тонкостях потерь электроэнергии в сетях.

Что такое потери электрической энергии?

Под потерями электроэнергии в широком смысле следует понимать разницу между поступлениями в сети и фактическим потреблением (полезным отпуском). Расчет потерь предполагает определение двух величин, что выполняется через учет электрической энергии. Одни стоят непосредственно на подстанции, другие у потребителей.

Потери могут рассчитываться в относительных и абсолютных величинах. В первом случае исчисление выполняется в процентах, во втором - в киловатт-часах. Структура разделена на две основных категории по причине возникновения. Общие потери именуются фактическими и являются основой эффективности работы подразделения.

Где выполняется расчет?

Расчет потерь электроэнергии в электрических сетях выполняется по следующим направлениям:

  1. Для предприятий, генерирующих энергию и отдающих в сеть. Уровень зависит от технологии производства, правильности определения собственных нужд, наличия технических и коммерческих учетов. Потери генерации ложатся на коммерческие организации (включаются в стоимость) или добавляются в нормативы и фактические величины на районы или предприятия электрических сетей.
  2. Для высоковольтной сети. Передача на дальние расстояния сопровождается высоким уровнем потерь электроэнергии в линиях и силовом оборудовании подстанций 220/110/35/10 кВ. Рассчитывается путем определения норматива, а в более совершенных системах через приборы электронного учета и автоматизированных систем.
  3. Распределительные сети, где происходит разделение потерь на коммерческие и технические. Именно в этой области сложно прогнозировать уровень величины из-за фактора сложности обвязки абонентов современными системами учета. Потери при передаче электроэнергии рассчитываются по принципу поступило за минусом платы за потребленную электрическую энергию. Определение технической и коммерческой части выполняется через норматив.

Технические потери: физические причины появления и где возникают

Сущность технических потерь заключается в несовершенстве технологии и проводников, используемых в современной электроэнергетике. В процессе генерации, передачи и трансформации электроэнергии возникают физические явления, которые и создают условия утечки тока, нагрев проводников или прочие моменты. Технические потери могут возникать в следующих элементах:

  1. Трансформаторы. Каждый силовой трансформатор обладает двумя или тремя обмотками, посередине которого расположен сердечник. В процессе трансформации электроэнергии с большего на меньшего в этом элементе происходит нагрев, что и предполагает появление потерь.
  2. Линии электропередач. При транспортировке энергии на расстояния происходит утечка тока на корону для ВЛ, нагрев проводников. На расчет потерь в линии влияют следующие технические параметры: длина, сечение, удельная плотность проводника (медь или алюминий), коэффициенты потерь электроэнергии, в частности, коэффициент распределенности нагрузки, коэффициент формы графика.
  3. Дополнительное оборудование. К этой категории необходимо отнести технические элементы, которые участвуют в генерации, транспортировке, учете и потреблении электроэнергии. Величины для этой категории в основном постоянные или учитываются через счетчики.

Для каждого вида элементов электрической сети, для которой рассчитываются технические потери, имеется разделение на потери холостого хода и нагрузочные потери. Первые считаются постоянной величиной, вторые зависят от уровня пропуска и определяются для анализируемого периода, зачастую за месяц.

Коммерческие потери: основное направление повышения эффективности в электроэнергетике

Коммерческие потери электроэнергии считаются сложно прогнозируемой величиной, так как зависят от потребителей, от их желания обмануть предприятие или государство. Основой указанных проблем являются:

  1. Сезонная составляющая. В представленное понятие вкладывается недоплата физических лиц по реально отпущенной электрической энергии. К примеру, в Республике Беларусь существует 2 причины появления «сезонки» - это наличие льгот по тарифам и оплата не на 1, а на 25 число.
  2. Несовершенство приборов учетов и их неправильная работа. Современные технические средства для определения потребленной энергии значительно упростили задачу абонентской службе. Но электроника или неправильно налаженная система учета может подвести, что и становится причиной рост коммерческих потерь.
  3. Воровство, занижение показаний счетчиков коммерческими организациями. Это отдельная тема для разговора, которая предполагает различные ухищрения физических и юридических лиц по сокращению расходов на электрическую энергию. Все это сказывается на росте потерь.

Фактические потери: общий показатель

Для расчета фактических потерь необходимо сложить коммерческую и техническую составляющую. Однако реальный расчет этого показателя осуществляется по-другому, формула потерь электроэнергии следующая:

Величина потерь = (Поступления в сеть - Полезный отпуск - Перетоки в другие энергосистемы - Собственные нужды) / (Поступления в сеть - Беспотерьные - Перетоки - Собственные нужды) * 100%

Зная каждый элемент, определяют фактические потери в процентном отношении. Для вычисления требуемого параметра в абсолютных величинах необходимо выполнить расчеты только числителя.

Какие потребители считаются беспотерьными и что такое перетоки?

В представленной выше формуле используется понятие "беспотерьные", которое определяется по коммерческим приборам учета на подстанциях высокого напряжения. Предприятие или организация самостоятельно несут расходы на потери электроэнергии, которые учитываются прибором учета в точке подключения к сетям.

Что касается перетоков, то они также относятся к беспотерьным, хотя высказывание не совсем корректное. В общем понимании это электрическая энергия, которая из одной энергосистемы отправляется в другую. Учет осуществляется также с использованием приборов.

Собственные нужды и потери электрической энергии

Собственные нужды необходимо отнести к особой категории и разделу фактических потерь. Для работы электросетей требуются затраты на поддержание функционирования подстанций, расчетно-кассовых центров, административных и функциональных зданий РЭСов. Все эти величины фиксируются и отражаются в представленном параметре.

Методики расчета технических потерь на предприятиях электроэнергетики

Потери электроэнергии в электрических сетях осуществляется по двум основным методикам:

  1. Расчет и составление норматива потерь, что реализовывается через специальное программное обеспечение, куда закладывается информация по топологии схемы. Согласно последней определяются нормативные величины.
  2. Составление небалансов для каждого элемента электрических сетей. В основе этого метода лежит ежедневное, еженедельное и ежемесячное составление балансов в высоковольтной и распределительных сетях.

Каждый вариант обладает особенностями и эффективностью. Необходимо понимать, что выбор варианта зависит и от финансовой стороны вопроса.

Расчет норматива потерь

Расчет потерь электроэнергии в сетях во многих странах СНГ и Европы осуществляется с применением данной методологии. Как отмечалось выше, процесс предполагает использование специализированного софта, в котором имеются нормативные величины и топология схемы электрических сетей.

Для получения информации о технических потерях от сотрудника организации потребуется внести характеристики пропуска по фидеру активной и реактивной энергии, определить максимальные значения по активной и реактивной мощности.

Необходимо отметить, что погрешность таких моделей может доходить до 25 % только при расчете потерь электроэнергии в линии. К представленному методу следует относиться в качестве математической, примерной величине. В этом и выражается несовершенство методологии просчета технических потерь в электрических сетях.

Используемое программное обеспечение для расчета

На текущий момент существует огромное количество программного софта, который выполняет расчет норматива технических потерь. Выбор того или иного продукта зависит от стоимости обслуживания, региональности и других важных моментов. В Республике Беларусь основной программой считается DWRES.

Софт разрабатывался группой ученых и программистов Белорусского Национального Технического Университета под руководством профессора Фурсанова Н.И. Инструмент для расчета норматива потерь специфичен, обладает рядом системных достоинств и недостатков.

Для рынка России особой популярностью пользуется ПО «РПТ 3», который разрабатывался специалистами ОАО «НТЦ Электроэнергетики». Софт весьма неплохой, выполняет поставленные задачи, но также обладает рядом отрицательных сторон. Тем не менее расчет нормативных величин осуществляется в полной мере.

Составление небаланса в высоковольтных и распределительных сетях

Потери электроэнергии технического плана можно выявить через другой метод. О нем уже говорилось выше - предполагается, что все высоковольтные или распределительные сети обвязаны приборами учета. Они помогают определить величину максимально точно. Кроме этого, подобная методика обеспечивает реальную борьбу с неплательщиками, воровством и неправильное использование энергооборудования.

Следует отметить, что подобный подход, несмотря на эффективность, неприменим в современных условиях. Для этого необходимы серьезные мероприятия с большими затратами на реализацию обвязки всех потребителей электронными учетами с передачей данных (АСКУЭ).

Как сократить технические потери: способы и решения

Снизить потери в линиях, трансформаторных подстанциях помогают следующие направления:

  1. Правильно выбранный режим работы оборудования, загрузка мощностей влияет на нагрузочные потери. Именно поэтому диспетчер обязан выбирать и вести наиболее приемлемый режим работы. К представленному направлению важно отнести выбор точек нормального разрыва, расчеты загруженности трансформаторов и так далее.
  2. Замена оборудование на новое, которое обладает низкими показателями холостого хода или лучше справляются с нагрузочными потерями. Для линий электропередач предполагается замена проводов на большее сечение, использование изолированных проводников.
  3. Сокращение времени обслуживания оборудования, что ведет к снижению расхода энергии на собственные нужды.

Сокращение коммерческой составляющей потерь: современные возможности

Потери электроэнергии по коммерческой части предполагают использование следующих методов:

  1. Установка приборов учетов и систем с меньшей погрешностью. На текущий момент оптимальными считаются варианты с классом точности 0,5 S.
  2. Использование автоматизированных систем передачи информации, АСКУЭ, которые призваны убрать сезонные колебания. Контроль за показаниями является условием борьбы с воровством и занижением данных.
  3. Осуществление рейдов по проблемным адресам, которые определяются через систему балансов распределительной сети. Последнее актуально при обвязке абонентов современными учетами.
  4. Применение новых технологий по определению недоучета систем с трансформаторами тока. Специализированные приборы распознают коэффициент смещения тангенса вектора распределения электрической энергии.

Потери электроэнергии в электрических сетях - важный показатель, который обладает существенным потенциалом для коммерческих организаций энергетического бизнеса. Сокращение фактических потерь приводит к росту получаемой прибыли, а это влияет на рентабельность. В заключение необходимо отметить, что оптимальный уровень потерь должен составлять 3-5 % в зависимости от района.

Для просмотра фотографий, размещённых на сайте, в увеличенном размере необходимо щёлкнуть кнопкой мышки на их уменьшенных копиях.

Методика расчёта технологических потерь электроэнергии
в линии электропередач ВЛ-04кВ садоводческого товарищества

До какого-то определённого времени необходимость расчёта технологических потерь в линии электропередач , принадлежащей СНТ, как юридическому лицу, или садоводам, имеющим садовые участки в границах какого-либо СНТ , была не нужна. Правление даже не задумывалось об этом. Однако дотошные садоводы или, скорее, сомневающиеся, заставили ещё раз бросить все силы на способы вычисления потерь электроэнергии в ЛЭП . Самый простой путь, безусловно - это тупое обращение в компетентную компанию, то бишь, электроснабжающую или мелкую фирмочку, которые и смогут рассчитать для садоводов технологические потери в их сети. Сканирование Интернета позволило разыскать несколько методик расчёта энергопотерь во внутренней линии электропередач применительно к любому СНТ. Их анализ и разбор необходимых значений для вычисления конечного результата позволил отбросить те из них, которые предполагали замер специальных параметров в сети с помощью специального оборудования.

Предлагаемая Вам для использования в садоводческом товариществе методика основана на знании основ передачи электроэнергии по проводам базового школьного курса физики. При её создании были использованы нормы приказа Минпромэнерго РФ № 21 от 03.02.2005 г. "Методика расчёта нормативных потерь электроэнергии в электрических сетях", а также книга Ю.С Железко, А.В Артемьева, О.В. Савченко "Расчёт, анализ и нормирование потерь элекроэнергии в электрических сетях", Москва, ЗАО "Издательство НЦЭНАС", 2008.

  • Величина годового потребления соответствует фактическому годовому потреблению электроэнергии в СНТ - 63000 кВт/ч;
  • Дело в том, что, если суммарно садоводы и электроустановки СНТ превышают выделяемое на всех количество электроэнергии, то соответственно расчёт технологических потерь должен уточняться для другого количества потребленных кВт/ч. Чем больше СНТ съест электроэнергии, тем больше будут и потери. Корректировка расчётов в этом случае необходима для уточнения величины платежа за технологические потери во внутренней сети , и последующего утверждения её на общем собрании.

  • К электрической сети, через 3 одинаковых по параметрам фидера (длина, марка провода (А-35), электрическая нагрузка), подключено 60 участков (домов).
  • Т.е. к распределительному щиту СНТ, где расположен общий трёхфазный счётчик, подключены 3 провода (3 фазы) и один нулевой провод. Соответственно к каждой фазе подключены равномерно по 20 домов садоводов, всего 60 домов.

  • Длина линии электропередач в СНТ составляет 2 км.
  • Расчёт потерь электроэнергии по суммарной длине линии.
  • Для расчёта потерь используется следующая формула:

    ΔW = 9,3·W²·(1 + tg²φ)·K ф ²·K L .L
    Д F

    ΔW - потери электроэнергии в кВт/ч;

    W - электроэнергия, отпущенная в линию электропередач за Д (дней), кВт/ч (в нашем примере 63000 кВт/ч или 63х10 6 Вт/ч );

    К ф - коэффициент формы графика нагрузки;

    К L - коэффициент, учитывающий распределённость нагрузки по линии (0,37 - для линии с рапределённой нагрузкой, т.е. на каждую фазу из трёх подключены по 20 домов садоводов);

    L - длина линии в километрах (в нашем примере 2 км);

    tgφ - коэффициент реактивной мощности (0,6 );

    F - сечение провода в мм²;

    Д - период в днях (в формуле используем период 365 дней);

    К ф ² - коэффициент заполнения графика, рассчитывается по формуле:

    K ф ² = (1 + 2К з)
    3K з

    где К з - коэффициент заполнения графика. При отсутствии данных о форме графика нагрузки обычно принимается значение - 0,3 ; тогда: K ф ² = 1,78 .

    Расчёт потерь по по формуле выполняется для одной линии фидера. Их 3 по 2 километра.

    Считаем, что общая нагрузка равномерно распределена по линиям внутри фидера. Т.е. годовое потребление по одной линии фидера равно 1/3 от общего потребления.

    Тогда: W сум. = 3 * ΔW в линии .

    Отпущенная садоводам электроэнергия за год составляет 63000 кВт/ч, тогда по каждой линии фидера: 63000 / 3 = 21000 кВт/ч или 21·10 6 Вт/ч - именно в таком виде значение присутствует в формуле.

    ΔW линии =9,3· 21²·10 6 ·(1+0,6²)·1,78·0,37 . 2 =
    365 35


    ΔW линии = 573,67 кВт/ч

    Тогда за год по трём линиям фидера: ΔW сум. = 3 х 573,67 = 1721 кВт/ч .

    Потери за год в ЛЭП в процентах: ΔW сум. % = ΔW сум /W сум x 100% = 2,73%

  • Учёт потерь на вводе в дома.
  • При условии, что все приборы учета потребляемой энергии размещены на опорах ЛЭП, то длина провода от точки присоединения линии, принадлежащей садоводу до его индивидуального прибора учёта составит всего 6 метров (общая длина опоры 9 метров).

    Сопротивление провода СИП-16 (самонесущий изолированный провод, сечением 16 мм²) на 6 метров длины составляет всего R = 0,02ом .

    P ввода = 4 кВт (примем за расчётную разрешённую электрическую мощность для одного дома).

    Рассчитываем силу тока для мощности 4 кВт: I ввода = P ввода /220 = 4000Вт / 220в = 18 (А) .

    Тогда: dP ввода = I² x R ввода = 18² х 0,02 = 6,48Вт - потери за 1 час при нагрузке.

    Тогда суммарные потери за год в линии одного подключённого садовода: dW ввода = dP ввода x Д (часов в год) х К исп.макс. нагрузки = 6,48 x 8760 x 0,3 = 17029 Вт/ч (17,029 кВт/ч) .

    Тогда суммарные потери в линиях 60 подключённых садоводов за год составят:
    dW ввода = 60 х 17,029 кВт/ч = 1021,74 кВт/ч

  • Учёт суммарных потерь в ЛЭП за год:
  • ΔW сум. итог = 1721 + 1021,24 = 2745,24 кВт/ч

    ΔW сум. %= ΔW сум / W сум x 100%= 2745,24/63000 х 100%= 4,36%

    Итого: Во внутренней воздушной ЛЭП СНТ протяжённостью 2 километра (3 фазы и ноль), проводе сечением 35мм², подключёнными 60 домами, при общем потреблении 63000 кВт/ч электроэнергии в год потери составят 4,36%

      Важные замечания:

    • Если в СНТ несколько фидеров, которые отличаются друг от друга протяжённостью, сечением провода и количеством проходящей через них электроэнергии, то подсчёт необходимо делать отдельно для одной линиии каждого фидера. Затем суммировать потери по всем фидерам для выведения общего процента потерь.
    • При расчёте потерь на участке линии, принадлежащей садоводу, учитывался коэффициент сопротивления (0, 02ом) одного провода марки СИП-2х16 при 20°C протяжённостью 6 метров. Соответственно, если у Вас в СНТ счётчики висят не на опорах, то необходимо увеличивать коэффициент сопротивления пропорционально длине провода.
    • При расчёте потерь на участке линии, принадлежащей садоводу, также следует учитывать разрешённую мощность для дома. При разном потреблении и разрешённой мощности потери будут разными. Правильным и целесообразным будет распределение мощности в зависимости от потребностей:
      для садовода-дачника - 3,5 кВт (т.е. соответствует ограничению по автомату защитного отключения на 16А);
      для постоянно проживающего в СНТ садовода - от 5,5 кВт до 7 кВт (соответственно автоматы защитного отключения при перегрузке на 25А и 32А).
    • При получении данных по потерям для проживающих и для дачников целесообразно установить и различную оплату технологических потерь для этих категорий садоводов (см. пункт 3 расчёта, т.е. в зависимости от величины I - силы тока, у дачника при 16А потери будут меньше, чем у постоянно проживающего при 32А, а значит и расчёта потерь на вводе в дома должно быть два отдельных).

    Пример: В заключении следует добавить то, что нашему СНТ "Пищевик" ЭСО "Янтарьэнерго" при заключении Договора на электроснабжение в 1997 г. установило рассчитанную ими величину технологических потерь от ТП до места установки общего прибора учёта электроэнергии равную 4,95% за 1 кВт/ч. Подсчёт потерь в линии составил по данной методике 1,5% максимум. С трудом верится в то, что потери в трансформаторе, который СНТ не принадлежит, составляют ещё почти 3,5%. А по Договору потери трансформатора не наши. Пора с этим разобраться. О результате Вы скоро узнаете.
    Продолжим. Ранее наш бухгалтер в СНТ брал 5% к кВт/ч за потери, установленные "Янтарьэнерго" и 5% за потери внутри СНТ. Никто, естественно ничего не рассчитывал. Пример расчёта, который использован на странице, почти на 90% соответствует действительности при эксплуатации старой ЛЭП в нашем СНТ. Так вот этих денег хватало на оплату всех потерь в сети. Даже оставались и постепенно накапливались излишки. Это подчеркивает тот факт, что методика работает и вполне соответствует действительности. Сравните сами: 5% и 5% (идет постепенное накопление излишков) или 4,95% и 4,36% (нет излишков). Т.е., расчёт потерь электроэнергии соответствует действительным потерям.

    Министерства промышленности и энергетики Российской Федерации(Минпромэнерго России)

    ПРИКАЗ

    Об утверждении методики расчета нормативных (технологических) потерь электроэнергии в электрических сетях

    Во исполнение п. 2 Постановления Правительства Российской Федерации от 26 февраля 2004 г. N 109 и п. 3 Постановления Правительства Российской Федерации от 27 декабря 2004 г. N 861, приказываю: 1. Утвердить предлагаемую методику расчета нормативных (технологических) потерь . 2. Контроль за исполнением настоящего приказа возложить на заместителя Министра промышленности и энергетики Российской Федерации А.Г. Реуса. Министр В.Б. Христенко

    УТВЕРЖДЕНА

    Приказом Минпромэнерго России

    Методика расчета нормативных (технологических) потерь электроэнергии в электрических сетях

    I. Общие положения

    1. Методика предназначена для расчета нормативов технологических потерь электрической энергии в электрических сетях организаций, осуществляющих передачу электрической энергии по электрическим сетям. 2. Нормативы технологических потерь электроэнергии, рассчитанные по данной методике, применяются при расчете платы за услуги по передаче электроэнергии по электрическим сетям. 3. Нормативы технологических потерь электроэнергии в планируемом периоде могут рассчитываться: - на основе данных о схемах, нагрузках сетей и составе работающего оборудования в планируемом периоде методами расчета потерь, установленными настоящей методикой; - на основе нормативных характеристик технологических потерь, рассчитанных в соответствии с настоящей методикой на основе расчетов потерь в отчетном (базовом) периоде. При отсутствии нормативной характеристики допускается определять нормативы потерь в планируемом периоде на основе расчетов потерь в отчетном (базовом) периоде, изменяя нагрузочные потери пропорционально квадрату отношения отпусков электроэнергии в сеть в планируемом и базовом периодах, а потери холостого хода - пропорционально мощности (количеству) работающего оборудования в планируемом и базовом периодах. 4. Термины и определения а) Фактические (отчетные) потери электроэнергии - разность между электроэнергией, поступившей в сеть, и электроэнергией, отпущенной из сети, определяемая по данным системы учета электроэнергии. б) Система учета электроэнергии - совокупность измерительных комплексов, обеспечивающих измерение поступления и отпуска электроэнергии из сети и включающих в себя измерительные трансформаторы тока (ТТ), напряжения (ТН), электрические счетчики, соединительные провода и кабели. Измерительные комплексы могут быть объединены в автоматизированную систему учета электроэнергии. в) Технологические потери электроэнергии - сумма технологических потерь при транспортировке электроэнергии и потерь при реализации электроэнергии. г) Технологические потери при транспортировке электроэнергии - сумма двух составляющих потерь: - потерь в линиях и оборудовании электрических сетей, обусловленных физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования (технические потери ); - расхода электроэнергии на собственные нужды подстанций. д) Потери при реализации электроэнергии - сумма потерь, обусловленных погрешностями системы учета электроэнергии, и потерь, обусловленных хищениями электроэнергии, виновники которых не установлены. Примечание. Потери, обусловленные хищениями электроэнергии, не являются технической характеристикой электрической сети и системы учета электроэнергии и их нормативы в данной методике не рассматриваются. е) Технические потери - сумма трех составляющих потерь в линиях и оборудовании электрических сетей: - потерь, зависящих от нагрузки электрической сети (нагрузочные потери ); - потерь, зависящих от состава включенного оборудования (условно-постоянные потери ); - потерь, зависящих от погодных условий. ж) Расход электроэнергии на собственные нужды подстанций - расход электроэнергии, необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала. з) Потери электроэнергии, обусловленные погрешностями системы учета электроэнергии - суммарный небаланс электроэнергии, обусловленный техническими характеристиками и режимами работы всех измерительных комплексов поступления и отпуска электроэнергии. и) Норматив технологических потерь электроэнергии - технологические потери электроэнергии (в абсолютных единицах или в процентах установленного показателя), рассчитанные в соответствии с данной методикой при режимах работы, технических параметрах линий, оборудования сетей и системы учета электроэнергии в рассматриваемом периоде. к) Нормативный метод расчета нагрузочных потерь электроэнергии - метод, использующий при расчете потерь весь объем имеющейся информации о схемах и нагрузках сетей данного напряжения. При увеличении оснащенности сетей средствами измерения и оперативного контроля режимов рекомендуется применение более точных методов из их перечня, установленного методикой. л) Нормативная характеристика технологических потерь электроэнергии - зависимость норматива технологических потерь электроэнергии от структурных составляющих поступления и отпуска электроэнергии.

    II . Методы расчета нормативных (технологических) потерь при транспортировке электроэнергии

    5. Методы расчета нагрузочных потерь 5.1. Нагрузочные потери электроэнергии за период Т часов (Д дней) могут быть рассчитаны одним из пяти методов в зависимости от объема имеющейся информации о схемах и нагрузках сетей (методы расположены в порядке снижения точности расчета): 1) оперативных расчетов; 2) расчетных суток; 3) средних нагрузок; 4) числа часов наибольших потерь мощности; 5) оценки потерь по обобщенной информации о схемах и нагрузках сети. Потери мощности в сети при использовании для расчета потерь электроэнергии методов 1 - 4 рассчитывают на основе заданной схемы сети и нагрузок ее элементов, определенных с помощью измерений или с помощью расчета нагрузок элементов электрической сети в соответствии с законами электротехники. Потери электроэнергии по методам 2 - 5 должны рассчитываться за каждый месяц расчетного периода с учетом схемы сети, соответствующей данному месяцу. Допускается рассчитывать потери за расчетные интервалы, включающие в себя несколько месяцев, схемы сетей в которых могут рассматриваться как неизменные. Потери электроэнергии за расчетный период определяют как сумму потерь, рассчитанных для входящих в расчетный период месяцев (расчетных интервалов). 5.1.1. Метод оперативных расчетов состоит в расчете потерь электроэнергии по формуле:

    Где n - число элементов сети; D t - интервал времени, в течение которого токовую нагрузку I ij i -го элемента сети с сопротивлением R i , принимают неизменной; m - число интервалов времени. Токовые нагрузки элементов сети определяют на основе данных диспетчерских ведомостей, оперативных измерительных комплексов (ОИК) и автоматизированных систем учета и контроля электроэнергии (АСКУЭ). 5.1.2. Метод расчетных суток состоит в расчете потерь электроэнергии по формуле:

    Где D W - потери электроэнергии за сутки расчетного месяца со среднесуточным отпуском электроэнергии в сеть W ср.сут и конфигурацией графиков нагрузки в узлах, соответствующей контрольным замерам; k л - коэффициент, учитывающий влияние потерь в арматуре воздушных линий и принимаемый равным 1,02 для линий напряжением 110 кВ и выше и равным 1,0 для линий более низких напряжений; - коэффициент формы графика суточных отпусков электроэнергии в сеть (график с числом значений, равным числу дней в месяце контрольных замеров); Д экв j - эквивалентное число дней в j-м расчетном интервале, определяемое по формуле:

    , (3)

    Где W мi - отпуск электроэнергии в сеть в i-м месяце с числом дней Д мi ; W м.р - то же, в расчетном месяце; N j - число месяцев в j-м расчетном интервале. При расчете потерь электроэнергии за месяц Д экв j = Д мi . Потери электроэнергии за расчетные сутки D W сут определяют как сумму потерь мощности, рассчитанных для каждого часового интервала расчетных суток. Потери электроэнергии в расчетном периоде определяют как сумму потерь во всех расчетных интервалах года. Допускается определять годовые потери электроэнергии на основе расчета D W сут для зимнего дня контрольных замеров, принимая в формуле (3) N j = 12. Коэффициент определяют по формуле:

    , (4)

    Где W i - отпуск электроэнергии в сеть за i-й день месяца; Д м - число дней в месяце. При отсутствии данных об отпуске электроэнергии в сеть за каждые сутки месяца коэффициент определяют по формуле:

    , (5)

    Где Д р и Д н.р - число рабочих и нерабочих дней в месяце (Д м = Д р + Д н.р); k w - отношение значений энергии, потребляемой в средний нерабочий и средний рабочий дни k w = W н.p /W p . 5.1.3. Метод средних нагрузок состоит в расчете потерь электроэнергии по формуле:

    , (6)

    Где D Р ср - потери мощности в сети при средних за расчетный интервал нагрузках узлов; - коэффициент формы графика суммарной нагрузки сети за расчетный интервал; k к - коэффициент, учитывающий различие конфигураций графиков активной и реактивной нагрузки различных ветвей сети; T j - продолжительность j-го расчетного интервала, ч. Коэффициент формы графика суммарной нагрузки сети за расчетный интервал определяют по формуле:

    Где P i - значение нагрузки на i-й ступени графика продолжительностью t i , час; m - число ступеней графика на расчетном интервале; Р ср - средняя нагрузка сети за расчетный интервал. Коэффициент k к в формуле (6) принимают равным 0,99. Для сетей 6 - 20 кВ и радиальных линий 35 кВ вместо значений P i и Р ср в формуле (7) могут использоваться значения тока головного участка I i и I ср. В этом случае коэффициент k к принимают равным 1,02. Допускается определять коэффициент формы графика за расчетный интервал по формуле:

    , (8)

    Где - коэффициент формы суточного графика дня контрольных замеров, рассчитанный по формуле (7); - коэффициент формы графика месячных отпусков электроэнергии в сеть (график с числом значений, равным числу месяцев в расчетном интервале), рассчитываемый по формуле:

    , (9)

    Где W м i - отпуск электроэнергии в сеть за i-й месяц расчетного интервала; W ср. мес - среднемесячный отпуск электроэнергии в сеть за месяцы расчетного интервала. При расчете потерь за месяц При отсутствии графика нагрузки значение определяют по формуле:

    Коэффициент заполнения графика суммарной нагрузки сети k з определяют по формуле:

    , (11)

    Где W о - отпуск электроэнергии в сеть за время Т; Т max - число часов использования наибольшей нагрузки сети. Среднюю нагрузку i-го узла определяют по формуле:

    Где W i - энергия, потребленная (генерированная) в i-м узле за время Т. 5.1.4. Метод числа часов наибольших потерь мощности состоит в расчете потерь электроэнергии по формуле:

    , (13)

    Где D Р max - потери мощности в режиме наибольшей нагрузки сети; t о - относительное число часов наибольших потерь мощности, определенное по графику суммарной нагрузки сети за расчетный интервал. Относительное число часов наибольших потерь мощности определяют по формуле:

    , (14)

    Где Р max - наибольшее значение из m значений Р i в расчетном интервале. Коэффициент k к в формуле (13) принимают равным 1,03. Для сетей 6 - 20 кВ и радиальных линий 35 кВ вместо значений Р i и Р max в формуле (14) могут использоваться значения тока головного участка I i , и I max . В этом случае коэффициент k к принимают равным 1,0. Допускается определять относительное число часов наибольших потерь мощности за расчетный интервал по формуле:

    , (15)

    Где t c - относительное число часов наибольших потерь мощности, рассчитанное по формуле (14) для суточного графика дня контрольных замеров. Значения t v и t N рассчитывают по формулам:

    , (16)

    , (17)

    где W м.р - отпуск электроэнергии в сеть в расчетном месяце. При расчете потерь за месяц t N = 1. При отсутствии графика нагрузки значение t о определяют по формуле: 5.1.5. Метод оценки потерь по обобщенной информации о схемах и нагрузках сети состоит в расчете потерь электроэнергии на основе зависимостей потерь от суммарной длины и количества линий, суммарной мощности и количества оборудования, полученных на основе технических параметров линий и оборудования или статистических данных. 5.2. Потери электроэнергии должны рассчитываться для характерных рабочих и ремонтных схем. В расчетную схему должны быть включены все элементы сети, потери в которых зависят от ее режима (линии, трансформаторы, высокочастотные заградители ВЧ-связи, токоограничивающие реакторы и т.п.). 5.3. Расчетные значения активных сопротивлений проводов воздушных линий (ВЛ) R n определяют с учетом температуры провода t n ,°С, зависящей от средней за расчетный период температуры окружающего воздуха t в и плотности тока в проводе j , А/мм 2:

    R n =R 20 [ 1+0,004(t в -20+8,3j 2 F/300) ] , (19)

    Где R 20 - стандартное справочное сопротивление провода сечением F , мм 2 , при t n = 20°С. Примечание. При отсутствии данных о средней плотности тока за расчетный период в каждом элементе электрической сети принимают расчетное значение j = 0,5 А/мм 2 . 5.4. Потери электроэнергии в соединительных проводах и сборных шинах распределительных устройств подстанций (СППС) определяют по формуле:

    Где F - среднее сечение проводов (шин); L - суммарная протяженность проводов (шин) на подстанции; j - плотность тока. При отсутствии данных о параметрах, используемых в формуле (20), расчетные потери в СППС принимают в соответствии с табл. П.1 приложения 1 и относят их к условно-постоянным потерям.5.5. Потери электроэнергии в измерительных трансформаторах тока (ТТ) определяют по формуле:

    , (21)

    Где D P ТТном - потери в ТТ при номинальной нагрузке; b ТТср - среднее значение коэффициента токовой загрузки ТТ за расчетный период. При отсутствии данных о параметрах, используемых в формуле (21), расчетные потери в ТТ принимают в соответствии с табл. П.3 приложения 1 и относят их к условно-постоянным потерям. 6. Нормативные методы расчета нагрузочных потерь 6.1. Нормативным методом расчета нагрузочных потерь электроэнергии в сетях 330 - 750 кВ является метод оперативных расчетов. 6.2. Нормативными методами расчета нагрузочных потерь электроэнергии в сетях 35 - 220 кВ являются: - при отсутствии реверсивных потоков энергии по межсетевым связям 35 - 220 кВ - метод расчетных суток; - при наличии реверсивных потоков энергии - метод средних нагрузок. При этом все часовые режимы в расчетном периоде разделяют на группы с одинаковыми направлениями потоков энергии. Расчет потерь проводят методом средних нагрузок для каждой группы режимов. При отсутствии данных о потреблении энергии на подстанциях 35 кВ временно допускается применение для расчетов потерь в этих сетях метода наибольших потерь мощности. 6.3. Нормативным методом расчета нагрузочных потерь электроэнергии в сетях 6 - 20 кВ является метод средних нагрузок. При отсутствии информации о потреблении энергии на ТП 6 - 20/0,4 кВ допускается определять их нагрузки, распределяя энергию головного участка (за вычетом энергии по ТП, где она известна, и потерь в сети 6 - 20 кВ) пропорционально номинальным мощностям или коэффициентам максимальной загрузки трансформаторов ТП. При отсутствии электрических счетчиков на головных участках фидеров 6 - 20 кВ временно допускается применение для расчетов потерь в этих сетях метода наибольших потерь мощности. 6.4. Нормативным методом расчета нагрузочных потерь электроэнергии в сетях 0,38 кВ является метод оценки потерь на основе зависимостей потерь от обобщенной информации о схемах и нагрузках сети, изложенный ниже. Потери электроэнергии в линии 0,38 кВ с сечением головного участка F г, мм 2 , отпуском электрической энергии в линию W 0.38, за период Д , дней, рассчитывают по формуле:

    , (22)

    Где L экв - эквивалентная длина линии; tg j - коэффициент реактивной мощности; k 0.38 - коэффициент, учитывающий характер распределения нагрузок по длине линии и неодинаковость нагрузок фаз. Эквивалентную длину линии определяют по формуле:

    L экв =L м +0,44 L 2-3 +0,22 L j , (23)

    Где L м - длина магистрали; L 2-3 - длина двухфазных и трехфазных ответвлений; L j - длина однофазных ответвлений. Примечание. Под магистралью понимается наибольшее расстояние от шин 0,4 кВ распределительного трансформатора 6 - 20/0,4 кВ до наиболее удаленного потребителя, присоединенного к трехфазной или двухфазной линии. Внутридомовые сети многоэтажных зданий (до счетчиков электрической энергии) включают в длину ответвлений соответствующей фазности.При наличии стальных или медных проводов в магистрали или ответвлениях в формулу (23) подставляют длины линий, определяемые по формуле:

    L=L а + 4L с + 0,6L м, (24)

    Где L а, L с и L м - длины алюминиевых, стальных и медных проводов, соответственно. Коэффициент k 0,38 определяют по формуле:

    k 0.38 = k и (9,67 - 3,32d р - 1,84d р), (25)

    Где d р - доля энергии, отпускаемой населению; k и - коэффициент, принимаемый равным 1 для линии 380/220 В и равным 3 для линии 220/127 В. При использовании формулы (22) для расчета потерь в N линиях с суммарными длинами магистралей L м å , двухфазных и трехфазных ответвлений L 2-3 å и однофазных ответвлений L 1 å в формулу подставляют средний отпуск электроэнергии в одну линию W 0,38 =W 0,38 å /N , где W 0,38 å - суммарный отпуск энергии в N линий, и среднее сечение головных участков, а коэффициент k 0,38 , определенный по формуле (25), умножают на коэффициент k N , учитывающий неодинаковость длин линий и плотностей тока на головных участках линий, определяемый по формуле

    k N =1,25 + 0,14 d р (26)

    При отсутствии данных о коэффициенте заполнения графика и (или) коэффициенте реактивной мощности принимают k з =0,3; tg j =0,6. При отсутствии учета электроэнергии, отпускаемой в линии 0,38 кВ, ее значение определяют, вычитая из энергии, отпущенной в сеть 6 - 20 кВ, потери в линиях и трансформаторах 6 - 20 кВ и энергию, отпущенную в ТП 6-20/0,4 кВ и линии 0,38 кВ, находящиеся на балансе потребителей. 7. Методы расчета условно-постоянных потерь 7.1. К условно-постоянным потерям электроэнергии относятся: - потери холостого хода в силовых трансформаторах (автотрансформаторах) и трансформаторах дугогасящих реакторов; - потери в оборудовании, нагрузка которого не имеет прямой связи с суммарной нагрузкой сети (регулируемые компенсирующие устройства); - потери в оборудовании, имеющем одинаковые параметры при любой нагрузке сети (нерегулируемые компенсирующие устройства, вентильные разрядники (РВ), ограничители перенапряжений (ОПН), устройства присоединения ВЧ-связи (УПВЧ), измерительные трансформаторы напряжения (ТН), включая их вторичные цепи, электрические счетчики 0,22 - 0,66 кВ и изоляция силовых кабелей). 7.2. Потери электроэнергии холостого хода в силовом трансформаторе (автотрансформаторе) определяют на основе приведенных в паспортных данных оборудования потерь мощности холостого хода D Р х, по формуле:

    , (27)

    Где T р i - число часов работы оборудования в i-м режиме; U i - напряжение на оборудовании в i-м режиме; U ном - номинальное напряжение оборудования. Напряжение на оборудовании определяют с помощью измерений или с помощью расчета установившегося режима сети в соответствии с законами электротехники. 7.3. Потери электроэнергии в шунтирующем реакторе (ШР) определяют по формуле (27) на основе приведенных в паспортных данных потерь мощности D Р р. Допускается определять потери в ШР на основе данных табл. П.1 приложения 1. 7.4. Потери электроэнергии в синхронном компенсаторе (СК) или генераторе, переведенном в режим СК, определяют по формуле:

    Где b Q - коэффициент максимальной нагрузки СК в расчетном периоде; D Р ном - потери мощности в режиме номинальной загрузки СК в соответствии с паспортными данными. Допускается определять потери в СК на основе данных табл. П.2 приложения 1. 7.5. Потери электроэнергии в статических компенсирующих устройствах (КУ) - батареях конденсаторов (БК) и статических тиристорных компенсаторах (СТК) - определяют по формуле:

    D W КУ = D р ку S ку Т р, (29)

    Где D р ку - удельные потери мощности в соответствии с паспортными данными КУ; S ку - мощность КУ (для СТК принимается по емкостной составляющей). При отсутствии паспортных данных значение D р ку принимают равным для БК 0,003 кВт/квар, для СТК 0,006 кВт/квар.7.6. Потери электроэнергии в вентильных разрядниках, ограничителях перенапряжений, устройствах присоединения ВЧ-связи, измерительных трансформаторах напряжения, электрических счетчиках 0,22 - 0,66 кВ и изоляции силовых кабелей принимают в соответствии с данными заводов-изготовителей оборудования. При отсутствии данных завода-изготовителя расчетные потери принимают в соответствии с приложением 1 к настоящей Методике. 8. Методы расчета потерь, зависящих от погодных условий 8.1. Потери, зависящие от погодных условий, включают в себя три вида потерь: - на корону; - от токов утечки по изоляторам воздушных линий; - расход электроэнергии на плавку гололеда. 8.2. Потери электроэнергии на корону определяют на основе данных об удельных потерях мощности, приведенных в табл. 1, и о продолжительностях видов погоды в течение расчетного периода. При этом к периодам хорошей погоды (для целей расчета потерь на корону) относят погоду с влажностью менее 100% и гололед; к периодам влажной погоды - дождь, мокрый снег, туман. Таблица 1 . Удельные потери мощности на корону.

    Напряжение ВЛ, тип опоры, число и сечение проводов в фазе

    Потери мощности на корону, кВт/км, при погоде,

    сухой снег

    изморозь

    220ст- 1 ´ 300

    220ст/2-1 ´ 300

    220жб-1 ´ 300

    220жб/2- 1 ´ 300

    110ст-1 ´ 120

    110ст/2-1 ´ 120

    110жб-1 ´ 120

    110жб/2-1 ´ 120

    Примечания: 1. Вариант 500-8 ´ 300 соответствует линии 500 кВ, построенной в габаритах 1150 кВ, вариант 220-3 ´ 500 - линии 220 кВ, построенной в габаритах 500 кВ. 2. Варианты 220/2-1 ´ 300, 154/2-1 ´ 185 и 110/2-1 ´ 120 соответствуют двухцепным линиям. Потери во всех случаях приведены в расчете на одну цепь.3. Индексы "ст" и "жб" обозначают стальные и железобетонные опоры. 8.3. При отсутствии данных о продолжительностях видов погоды в течение расчетного периода потери электроэнергии на корону определяют по табл. 2 в зависимости от региона расположения линии. Распределение территориальных образований Российской Федерации по регионам для целей расчета потерь, зависящих от погодных условий, приведено в приложении 2 к настоящей Методике. Таблица 2 . Удельные годовые потери электроэнергии на корону

    Напряжение ВЛ, кВ, число и сечение проводов в фазе

    Удельные потери электроэнергии на корону, тыс. кВт/км, в год, в регионе

    220ст- 1 ´ 300

    220ст/2-1 ´ 300

    220жб-1 ´ 300

    220жб/2- 1 ´ 300

    110ст-1 ´ 120

    110ст/2-1 ´ 120

    110жб-1 ´ 120

    110жб/2-1 ´ 120

    Примечание. Значения потерь, приведенные в табл. 2 и 4, соответствуют году с числом дней 365. При расчете нормативных потерь в високосном году применяется коэффициент к = 366/365. 8.4. При расчете потерь на линиях с сечениями, отличающимися от приведенных в табл.1, расчетные значения, приведенные в таблицах 1 и 2, умножают на отношение F т /F ф, где F т - суммарное сечение проводов фазы, приведенное в табл. 1; F ф - фактическое сечение проводов линии.8.5. Влияние рабочего напряжения линии на потери на корону учитывают, умножая данные, приведенные в таблицах 1 и 2, на коэффициент, определяемый по формуле:

    К u кор =6,88 U 2 отн - 5,88 U отн, (30)

    Где U отн - отношение рабочего напряжения линии к его номинальному значению. 8.6. Потери электроэнергии от токов утечки по изоляторам воздушных линий определяют на основе данных об удельных потерях мощности, приведенных в табл.3, и о продолжительностях видов погоды в течение расчетного периода. По влиянию на токи утечки виды погоды должны объединяться в 3 группы: 1 группа - хорошая погода с влажностью менее 90%, сухой снег, изморозь, гололед; 2 группа - дождь, мокрый снег, роса, хорошая погода с влажностью 90% и более; 3 группа - туман. Таблица 3. Удельные потери мощности от токов утечки по изоляторам ВЛ

    Группа погоды

    Потери мощности от токов утечки по изоляторам, кВт/км, на ВЛ напряжением, кВ

    0,103 0,953 1,587
    8.7. При отсутствии данных о продолжительностях различных погодных условий годовые потери электроэнергии от токов утечки по изоляторам воздушных линий принимают по данным табл. 4. Таблица 4 . Удельные годовые потери электроэнергии от токов утечки по изоляторам ВЛ

    Номер региона

    Потери электроэнергии от токов утечки по изоляторам ВЛ, тыс. кВтч/км в год, при напряжении, кВ

    8.8. Нормативный расход электроэнергии на плавку гололеда определяют по табл. 5 в зависимости от района расположения ВЛ по гололеду (гл. 2.5 ПУЭ). Таблица 5 . Удельный расход электроэнергии на плавку гололеда

    Число проводов в фазе и сечение, мм 2

    Суммарное сечение проводов в фазе, мм 2

    Расчетный расход электроэнергии на плавку гололеда, тыс. кВт-ч/км в год, в районе по гололеду:

    9. Расход электроэнергии на собственные нужды подстанций Расход электроэнергии на собственные нужды подстанций определяют на основе приборов учета, установленных на трансформаторах собственных нужд (ТСН). При установке прибора учета на шинах 0,4 кВ ТСН потери в ТСН, рассчитанные в соответствии с данной методикой, должны быть добавлены к показанию счетчика.

    III . Методы расчета потерь, обусловленных погрешностями системы учета электроэнергии

    10. Потери электроэнергии, обусловленные погрешностями системы учета электроэнергии, рассчитывают как сумму значений, определенных для каждой точки учета поступления электроэнергии в сеть и отпуска электроэнергии из сети по формуле:

    D W уч = - (D тт b + D ТН + D q b - D U тн + D сч) W /100, (31)

    Где D тт b - токовая погрешность ТТ, %, при коэффициенте токовой загрузки b ТТ; D тн - погрешность ТН по модулю напряжения, %; D q b - погрешность трансформаторной схемы подключения счетчика, %, при коэффициенте токовой загрузки b ТТ; D сч - погрешность счетчика, %; D U тн - потеря напряжения во вторичной цепи ТН, %;W - энергия, зафиксированная счетчиком за расчетный период.10.1. Погрешность трансформаторной схемы подключения счетчика определяют по формуле:

    D q b = 0,0291 (q I b - q U) tg j , (32)

    Где q I b - угловая погрешность ТТ, мин, при коэффициенте токовой загрузки b ТТ; q U - угловая погрешность ТН, мин; tg j - коэффициент реактивной мощности контролируемого присоединения. 10.2. Коэффициент токовой загрузки ТТ за расчетный период определяют по формуле:

    , (33)

    Где U ном и I ном - номинальные напряжение и ток первичной обмотки ТТ. 10.3. Значения погрешностей в формулах (31) и (32) определяют на основе данных метрологической поверки. При отсутствии данных о фактических погрешностях измерительных комплексов допускается проводить расчет потерь электроэнергии, обусловленных погрешностями системы учета электроэнергии, в соответствии с Приложением 3 к настоящей Методике.

    IV . Методы расчета нормативных характеристик технологических потерь электроэнергии

    11. Нормативную характеристику технологических потерь электроэнергии определяют на основе расчета потерь в базовом периоде методами, изложенными в разделах II и III настоящей методики, и используют для определения норматива потерь на плановый период. 11.1. Нормативная характеристика технологических потерь электроэнергии имеет вид:

    Где W i (j) - значения показателей (поступления и отпуска электроэнергии), отражаемых в отчетности; n - число показателей; W o - отпуск электроэнергии в сеть; Д - число дней расчетного периода, которому соответствуют задаваемые значения энергии; А , В и С - коэффициенты, отражающие составляющие потерь: А ij и B i - нагрузочные потери, С пост - условно-постоянные потери, С пог - потери, зависящие от погодных условий, С с.н - расход электроэнергии на собственные нужды подстанций, В уч - потери, обусловленные погрешностями системы учета электроэнергии.11.2. Нормативную характеристику нагрузочных потерь электроэнергии в замкнутых сетях определяют на основе предварительно рассчитанной характеристики нагрузочных потерь мощности, имеющей вид:

    , (35)

    Где P i(j) - значения мощностей, соответствующих показателям, отраженным формуле (34); a ij и b i - коэффициенты нормативной характеристики потерь мощности. 11.3. Преобразование коэффициентов характеристики потерь мощности в коэффициенты характеристики потерь электроэнергии производят по формулам:

    , (36)

    11.4. Для составляющих нормативной характеристики, содержащих произведения значений энергии, значение вычисляют по формуле:

    , (38)

    Где k ф i и k ф j - коэффициенты формы i-го и j-го графиков активной мощности; r ij - коэффициент корреляции i-го и j-го графиков, рассчитываемый по данным ОИК. При отсутствии расчетов r ij принимают . 11.5. Коэффициент С пост определяют по формуле

    С пост = D W пост /Д, (39)

    Где D W пост - условно-постоянные потери электроэнергии в базовом периоде. 11.6. Коэффициент С пог определяют по формуле

    С пог = D W пог /Д, (40)

    Где D W пост - потери электроэнергии, зависящие от погодных условий, в базовом периоде. 11.7. Коэффициент С с.н определяют по формуле

    С с.н = W с.н /Д, (41)

    Где D W с.н - расход электроэнергии на собственные нужды подстанций в базовом периоде. 11.8. Коэффициент В уч определяют по формуле

    B уч = D W уч /W о, (42)

    Где D W уч - потери, обусловленные погрешностями системы учета электроэнергии, в базовом периоде. 11.9. Нормативная характеристика нагрузочных потерь электроэнергии в радиальных сетях имеет вид:

    , (43)

    Где W U - отпуск электроэнергии в сеть напряжением U за Д дней; А U - коэффициент нормативной характеристики. 11.10. Коэффициент A U нормативной характеристики (43) определяют по формуле:

    , (44)

    Где D W н U - нагрузочные потери электроэнергии в сети напряжением U в базовом периоде. 11.11. Коэффициенты А и С (С пост, С пог и С с.н) для радиальных сетей 6 - 35 кВ в целом по их значениям, рассчитанным для входящих в сеть линий (А i и С i), определяют по формулам:

    , (45)

    Где W i - отпуск электроэнергии в i-го линию; W å - то же, в сеть в целом; n - количество линий. Коэффициенты A i и Сi , должны быть рассчитаны для всех линий сети. Их определение на основе расчета ограниченной выборки линий не допускается. 11.12. Коэффициент А для сетей 0,38 кВ рассчитывают по формуле (43), в которую в качестве D W нU подставляют значение суммарных нагрузочных потерь во всех линиях 0,38 кВ D W н 0.38 , рассчитанных по формуле (22) с учетом формулы (26).

    Приложение 1

    (технологических) потерь

    электроэнергии в электрических сетях

    Расчетные потери электроэнергии в оборудовании

    1. Таблица П.1. Потери электроэнергии в шунтирующих реакторах (ШР) и соединительных проводах и сборных шинах распределительных устройств подстанций (СППС)

    Вид оборудования

    Удельные потери энергии при напряжении. кВ

    ШР, тыс. кВт ч/МВА в год

    СП ПС, тыс. кВт ч/ подстанцию в год

    Примечание. Значения потерь, приведенные в приложении 1, соответствуют году с числом дней 365. При расчете нормативных потерь в високосном году применяется коэффициент к = 366/365. 2. Таблица П.2. Потери электроэнергии в синхронных компенсаторах

    Вид оборудования

    Потери энергии, тыс. кВт ч в год, при номинальной мощности СК, МВА

    СК
    Примечание. При мощности СК, отличной от приведенной в табл. П.2, потери определяют с помощью линейной интерполяции. 3. Таблица П.3. Потери электроэнергии в вентильных разрядниках (РВ), ограничителях перенапряжений (ОПН), измерительных трансформаторах тока (ТТ) и напряжения (ТН) и устройствах присоединения ВЧ-связи (УПВЧ)

    Вид оборудования

    Потери электроэнергии, тыс. кВт ч/год. при напряжении оборудования. кВ

    РВ опн
    Примечание 1 . Потери электроэнергии в УПВЧ даны на одну фазу, для остального оборудования - на три фазы. Примечание 2 . Потери электроэнергии в ТТ напряжением 0,4 кВ принимают равными 0,05 тыс. кВт ч/год. 4. Потери электроэнергии в электрических счетчиках 0,22 - 0,66 кВ, принимают в соответствии со следующими данными, кВт ч в год на один счетчик: однофазный, индукционный - 18,4; трехфазный, индукционный - 92,0; однофазный, электронный - 21,9; трехфазный, электронный - 73,6. 5. Таблица П.4. Потери электроэнергии в изоляции кабелей

    Сечение, мм 2

    Потери электроэнергии в изоляции кабеля, тыс. кВтч/км в год, при номинальном напряжении. кВ

    Приложение 2

    к Методике расчета нормативных

    (технологических) потерь

    электроэнергии в электрических сетях

    Распределение территориальных образований Российской Федерации по регионам для целей расчета потерь, зависящих от погодных условий

    Номер региона

    Территориальные образования, входящие в регион

    Республика Саха-Якутия, Хабаровский край Области : Камчатская, Магаданская, Сахалинская. Республики : Карелия, Коми Области : Архангельская, Калининградская, Мурманская Области : Вологодская, Ленинградская, Новгородская, Псковская Республики : Мари-Эл, Мордовия, Татария, Удмуртия, Чувашская Области : Белгородская, Брянская, Владимирская, Воронежская, Ивановская, Калужская, Кировская, Костромская, Курская, Липецкая, Московская, Нижегородская, Орловская, Пензенская, Пермская, Рязанская, Самарская, Саратовская, Смоленская, Тамбовская, Тверская, Тульская, Ульяновская, Ярославская Республики : Дагестан, Ингушетия, Кабардино-Балкария, Карачаево-Черкесская, Калмыкия, Северная Осетия, Чечня Края: Краснодарский, Ставропольский Области : Астраханская, Волгоградская, Ростовская Республика Башкирия Области : Курганская, Оренбургская, Челябинская Республики : Бурятия, Хакасия Края : Алтайский, Красноярский, Приморский Области : Амурская, Иркутская, Кемеровская, Новосибирская, Омская, Свердловская, Томская, Тюменская, Читинская

    Приложение 3

    к Методике расчета нормативных

    (технологических) потерь

    электроэнергии в электрических сетях

    Расчет потерь, обусловленных погрешностями системы учета электроэнергии

    П.3.1. Потери электроэнергии, обусловленные погрешностями системы учета электроэнергии, определяют на основе данных о классах точности ТТ - К ТТ, ТН - К ТН, счетчиков - К сч, коэффициентах токовой загрузки ТТ - b ТТ и сроках службы счетчиков после последней поверки - Т пов, лет. Приведенные ниже зависимости средних погрешностей ТТ, ТН и счетчиков применяют только для расчета суммарного недоучета по электрической сети в целом. Эти зависимости не допускается применять для корректировки показаний счетчика в конкретной точке учета. П.3.2. Потери электроэнергии, обусловленные погрешностями системы учета электроэнергии, рассчитывают как сумму значений, определенных для каждой точки учета поступления электроэнергии в сеть и отпуска электроэнергии из сети по формуле:

    Где D тт i , D тн i и D сч i - средние погрешности ТТ, ТН и счетчика, %, в i-й точке учета; W i - энергия, зафиксированная счетчиком в i-й точке учета за расчетный период. П.3.3. Среднюю погрешность ТТ определяют по формулам: для ТТ с номинальным током I ном 1000 А: при b ТТ 0,05 D ТТ = 30( b ТТ - 0,0833) К ТТ; (П.2) при 0,05 < b ТТ 0,2 D ТТ = 3,3333 ( b ТТ - 0,35) К ТТ; (П.3) при b ТТ > 0,2 D ТТ = 0,625 ( b ТТ - 1)К ТТ; (П.4) для ТТ с номинальным током I ном более 1000 А:

    , (П.5)

    П.3.4. Среднюю погрешность ТН (с учетом потерь в соединительных проводах) определяют по формуле:

    , (П.5)

    П.3.5. Среднюю погрешность индукционного счетчика определяют по формуле:

    , (П.7)

    Коэффициент k принимают равным 0,2 для индукционных счетчиков, изготовленных до 2000 г, и 0,1 - для индукционных счетчиков, изготовленных позже этого срока. При определении нормативного недоучета значение Т

    Потери электроэнергии в электрических сетях случаются достаточно часто и этому есть свои причины. Потерями в электросетях считаются разности между переданной электрической энергией на линиях электропередачи до учтенной, потребляемой энергией потребителя. Рассмотрим, какие бывают меры по снижению потерь.

    Потери мощности в линии электропередач: расстояние от электростанции

    Учёт и оплата всех разновидностей потерь регулируется законом. При транспортировании энергии на большие расстояния от производителя до потребителя идет потеря части электроэнергии. Происходит это по различным причинам, одна из которых – уровень напряжения, которое потребляет обычный потребитель (220 или 380 В). Если осуществлять транспортирование такого электронапряжения от генераторов станций напрямую, то нужно проложить электрические сети с диаметром электропровода, который обеспечит всех требуемым электротоком. Электропровода будут с очень большим сечением.

    Их не будет возможности разместить на ЛЭП, из-за немыслимой тяжести, прокладывание в земле на большие расстояния будет стоить очень дорого.

    Для того чтобы исключить этот фактор в электросетях используют высоковольтные линии передач электроэнергии . Передавая энергию с таким электронапряжением, она в разы растрачивается и от некачественного контакта электропроводников, которые с года повышают свое сопротивление. Растут потери при увеличении влажности воздуха – повышается электроток утечки на изоляторах и на корону. Также повышаются потери в кабелях при сокращении параметров изолирования электропроводов. Отправил поставщик электроэнергию в поставляющую организацию.

    Она соответственно должна привести параметры в необходимые показатели при передаче :

    1. Преобразовать продукцию, что была получена в электронапряжение 6-10 кВ.
    2. Развести кабелями по пунктам приема.
    3. Затем вновь преобразовать в электронапряжение в проводах 0,4 кВ.

    Опять потери, трансформация при функционировании электротрансформаторов 6-10 кВ и 0,4 кВ. Обычному потребителю поставляется энергия в необходимом электронапряжении – 380-220 В. Трансформаторы имеют свой КПД и рассчитываются на определенную нагрузку. Если с мощностью переборщить или напротив, если ее будет меньше расчётной, потери в электросетях увеличатся в независимости от пожелания поставщика.

    Еще один момент, это несоответствие мощности трансформатора, который преобразует 6-10 кВ в 220 В. Если потребители заберут энергии больше мощности, указанной в паспорте трансформатора, он или ломается, или не может обеспечить требуемые параметры на выходе. В результате уменьшения электронапряжения электросети электрические приборы функционируют с нарушением паспортного режима и, поэтому, повышается потребление.

    От чего зависит потеря напряжения в проводах

    Потребитель взял свои 220 или 380 В на электросчетчике. Теперь энергия, которая будет теряться, может на конечного потребителя.

    Состоит из :

    1. Потерь на нагрев электропроводов, когда повышенное потребление из-за расчетов.
    2. Плохой электроконтакт в электроприборах коммутации электроснабжения.
    3. Емкостной и индуктивный характер электронагрузки.

    Также сюда включено применение старых светоприборов, холодильного оборудования и прочих устаревших технических устройств.

    Комплексные мероприятия по снижению потерь электроэнергии

    Рассмотрим мероприятия по сокращению электропотерь энергии в коттедже и квартирном помещении.


    Необходимо :

    1. Бороться, необходимо используя электропроводники соответствующие нагрузке. Сегодня в электросетях нужно следить за соответствием параметров электропроводов и мощностью, что потребляется. В ситуации невозможности корректировки эти параметры и введения к нормальным показателям, придется мириться с тем, что электроэнергия растрачивается на нагревание проводников, поэтому меняются параметры их изоляции и увеличивается риск возгорания в помещении.
    2. Плохой электроконтакт: в рубильниках – это применение инновационных конструкций с хорошими неокисляющимися электроконтактами. Любой окисел повышает сопротивление. В пускателях – эта же методика. Выключатели – система вкл./выкл. должна применять металл влагоусточивый и стойкий к высокому температурному режиму. Контакт зависит от качественного прижатия полюса к плюсу.
    3. Реактивная нагрузка. Все электрические приборы, которые не являются лампочками накаливания, электрическими плитками старого образца имеют реактивную составляющую потребления энергии. Любая индуктивность при подаче на нее тока сопротивляется течению по ней энергии за счёт развивающейся магнитной индукции. Спустя определенный период такое явление как магнитная индукция, которая не давала току идти, помогает его протеканию и добавляет в электросеть часть электроэнергии, что несет вред для общих электросетей. Развиваются особый процесс, который называется вихревые электротоки, они искажают норму показаний счетчиков и вносят негативные изменения в параметры энергии, которая поставляется. То же случается и при емкостной электронагрузке. Токи портят параметры энергии, которая поставляется потребителю. Борьба заключается в применении современных компенсаторов, в зависимости от параметров электронагрузки.
    4. Применение старых систем освещения (лампы накаливания). Их КПД имеет максимум – 3-5 %. Оставшиеся 95 % уходят на нагрев нити накаливания и в результате на нагрев окружающей среды и на излучение, которое человек не воспринимает. Поэтому совершенствовать тут не рационально. Появились прочие виды подачи света – люминесцентные лампочки, светодиоды, которые стали активно сегодня использоваться. Коэффициент полезного действия люминесцентных лампочек достигает 7 %, а у светодиодов процент близится к 20. Применение светодиодов позволяет сэкономить прямо сейчас и в процессе эксплуатирования за счёт долговечности – компенсация трат до 50 000 часов.

    Также нельзя не сказать о том, что уменьшить потери электроэнергии в доме можно при помощи монтажа стабилизатора электронапряжения. Как сообщает ратуша, найти его можно в специализированных компаниях.

    Как рассчитать потери электроэнергии: условия

    Проще всего посчитать потери в электросети, где применяется только один тип электропровода с одним сечением, например, если дома вмонтированы только электрокабели из алюминия с сечением в 35 мм. В жизни системы с одним типом электрокабеля почти не встречаются, обычно для снабжения зданий и сооружений применяются разные электропровода. В такой ситуации для получения точных результатов, надо отдельно считать для отдельных участков и линий электросистемы с разнообразными электрокабелями.

    Потери в электросети на трансформаторе и до него обычно не учитываются, так как индивидуальные электроприборы учёта потребляемой электроэнергии ставятся в электроцепь уже после такого спецоборудования.

    Важно :

    1. Расчёт потерь энергии в трансформаторе проводится на основе технических документов такого устройства, где будут указаны все требуемые вам параметры.
    2. Надо сказать, что любые расчёты выполняются для того чтобы определить величину максимума потерь в ходе передачи тока.
    3. При осуществлении подсчетов надо учитывать, что мощность электросети склада, производственного предприятия или другого объекта достаточна для обеспечения всех подключенных к ней энергопотребителей, то есть, система может функционировать без перенапряжения даже на максимуме нагрузки, на каждом включенном объекте.

    Величину выделенной электромощности можно узнать из договора заключенного с поставщиком энергии. Сумма потерь всегда зависит от мощности электросети, от ее потребления через поттер. Чем больше электронапряжения потребляется объектами, тем выше потери.

    Технические потери электроэнергии в сетях

    Технические потери энергии – потери, которые вызваны физическими процессами транспортировки, распределения и трансформирования электричества, выявляются посредством расчетов. Формула, по которой выполняется расчет: P=I*U.


    1. Мощность равняется перемножению тока на электронапряжение.
    2. Повышая напряжение при передавании энергии в электросетях можно в разы уменьшить ток, что даст возможность обойтись электропроводами с намного меньшим сечением.
    3. Подводный камень состоит в том, что в трансформаторе есть потери, которые кто-то должен компенсировать.

    Технологические потери подразделяются на условнопостоянные и переменные (зависят от электронагрузки).

    Что такое коммерческие потери электроэнергии

    Коммерческие потери энергии – электропотери, которые определяются как разность абсолютных и технологических потерь.

    Нужно знать :

    1. В идеале коммерческие электропотери энергии в электросети, должны быть нулевыми.
    2. Очевидно, но, что в реальности отпуск в электросеть, полезный отпуск и техпотери определяются с погрешностями.
    3. Их разности по факту и являются структурными элементами коммерческих электропотерь.

    Они должны быть по возможности сведены к минимальному значению за счёт проведения определенных мер. Если такой возможности нет, нужно внести поправки к показаниям счетчиков, они компенсируют систематические погрешности измерений электрической энергии.

    Возможные потери электроэнергии в электрических сетях (видео)

    Потери электрической энергии в электросетях приводят к дополнительным расходам. Поэтому важно их контролировать.

    Loading...Loading...