Системы уравнений с двумя неизвестными. Как решается система уравнений? Методы решения систем уравнения

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Наверняка многие знают, что уравнение представляет собой некое тождество с неизвестной, которую необходимо определить, чтобы решить уравнение и получить равные значения левой и правой частей. Чтобы решить данного рода уравнения необходимо перенести в левую сторону все известные значения, а в правую все неизвестные. Решить данные уравнения можно с помощью 3 методов:

1) подстановки;

2) сложения;

3) построения графиков.

Выбор метода зависит от целевого уравнения. Решить онлайн уравнение с двумя неизвестными можно на многих сайтах, однако слепо доверять полученному результату не стоит.

Ниже приведен пример решения уравнения с 2 неизвестными методом сложения.

\[-9x + 5y = -40\]

Первое, с чего стоит начать решение - сложить каждое слагаемое с учетом их знаков:

\[-5y + 5y = 0\]

В большинстве случаев, одна из сумм, включающая в себя неизвестную будет содержать величину, равную нулю. На следующем этапе решения уравнения нам необходимо составить уравнение из полученных данных:

\[-7x + 0 = 21\]

Найти неизвестное:

\[-7x = 21, x = 21 \div (-7) = -3\]

Вставить полученное значение в любое из исходных уравнений и получить 2 неизвестное с помощью решения уравнения линейного типа:

\[-6 - 5y = 61\]

\[-5y = 61 + 6\]

Конечный результат:

Где можно решить уравнение с 2 неизвестными онлайн?

Решить уравнение с двумя неизвестными онлайн решателем можно на сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

В этой главе содержится вспомогательный материал, относящийся к решению систем линейных уравнений (т. е. уравнений первой степени). Для исследования таких систем вводится важное понятие определителя. Результаты этой главы, - интересные и сами по себе, и в приложениях к аналитической геометрии, необходимы для понимания дальнейших глав книги,

§ 1. Системы уравнений с двумя и тремя неизвестными

При решении одного уравнения первой степени с одним неизвестным

возможны три случая:

1. Если , уравнение имеет единственное решение

2. Если уравнение имеет бесчисленное множество решений; любое число х удовлетворяет уравнению (так как ) и, значит, является его решением.

3. Если но уравнение не имеет решений, так как при подстановке вместо х любого числа в левой части получается нуль, в то время как правая часть отлична от нуля.

Из дальнейшего будет видно, что аналогичные три случая имеют место и при решении произвольной системы линейных уравнений.

Рассмотрим систему двух уравнений с двумя неизвестными:

Решением такой системы называется каждая пара значений подстановка которых вместо х и у обращает оба уравнения в тождества. Чтобы решить эту систему, умножим первое уравнение на второе - на и сложим их; мы получим

Отсюда, если , будем иметь

Аналогично находим, что

Таким образом, в случае, когда система (1) имеет единственное решение.

Выражения, стоящие в числителях и знаменателях правых частей равенств (2) и (3), устроены одинаково. А именно, рассмотрим квадратную таблицу чисел

Такие таблицы называются матрицами. Горизонтальные ряды образующих матрицу чисел называются ее строками, вертикальные - столбцами. Числа составляющие матрицу, называются ее элементами. В нашем примере мы имеем квадратную матрицу второго порядка. Диагональ, идущая из левого верхнего угла матрицы в правый нижний, называется ее главной диагональю. Знаменатели дробей, стоящих в правых частям равенств (2) и (3), устроены следующим образом: из произведения элементов, стоящих по главной диагонали матрицы А, вычитается произведение элементов, стоящих во второй, или побочной, ее диагонали:

Полученное выражение называется определителем матрицы А (определителем второго порядка) и обозначается так:

В этих обозначениях числитель дроби, стоящей в прарой части равенства (2), представляет собой определитель

получающийся из знаменателя заменой первого столбца столбцом свободных членов, а числитель дроби, стоящей в правой части равенства определитель

получающийся из знаменателя заменой второго столбца столбцом свободных членов уравнений системы (1),

Итак, мы нашли, что если то

Это - формулы Крамера для решения системы двух уравнений с двумя неизвестными.

Пример. Пользуясь формулами Крамера, решить систему уравнений

Рассмотрим теперь случай, когда

Равенство (4) можно переписать так:

т. е. в этом случае коэффициенты при неизвестных про порциональны. Если, кроме того, и

то и свободные члены пропорциональны коэффициентам при неизвестных, и мы имеем на самом деле одно уравнение с двумя неизвестными - оно допускает бесчисленное множество решений,

Наконец, если

т. е. если

то уравнения, очевидно, противоречат друг другу и система не имеет ни одного решения.

Рассмотрим теперь систему трех линейных уравнений с тремя неизвестными:

Решением этой системы называется каждая такая тройка чисел при подстановке которых все три уравнения обращаются в тождества. Умножив первое уравнение второе - на третье - на

и сложив их все, мы получим

(коэффициенты при y и z, как легко видеть, будут равны нулю). Отсюда, если коэффициент при х отличен от нуля, получаем

Посмотрим, как устроено выражение, стоящее в знаменателе правой части равенства (6). Для этого рассмотрим квадратную таблицу (матрицу третьего порядка)

Будем снова называть главной диагональю диагональ, идущую из левого верхнего угла этой матрицы в правый нижний, и побочной - диагональ, идущую из левого нижнего угла в правый верхний.

Знаменатель в формуле (6) представляет собой алгебраическую сумму шести членов, каждый из которых является произведением трех элементов, взятых по одному из каждой строки и каждого столбца матрицы А, причем знак плюс имеет произведение элементов,

принадлежащих главной диагонали, и два произведения элементов, образующих в матрице (равнобедренные) треугольники с основаниями, параллельными главной диагонали (рис. 1, а), а знак минус имеет произведение элементов, принадлежащих побочной диагонали, и два произведения элементов, образующих треугольники с основаниями, параллельными побочной диагонали (рис. 1, б).

Такое выражение называется определителем, составленным из матрицы А (определителем третьего порядка), и обозначается так:

Таким образом, по определению,

Выражение, стоящее в числителе правой части формулы (6), получается из знаменателя, если каждую букву а заменить буквой с тем же номером, т. е.

Аналогично можно показать, что при из системы (5) следуют равенства

где - определитель, получающийся из определителя заменой столбца столбцом свободных

членов. Это - формулы Крамера для системы трех уравнений с тремя неизвестными.

Пример. Решить по формулам Крамера систему уравнений

Следовательно,

Для того, чтобы понять, что такое определитель порядка, рассмотрим снова определители второго и третьего порядков:

Мы видим, что определитель есть алгебраическая сумма всевозможных произведений его элементов, взятых по одному из каждой строки и каждого столбца.

Каждое такое произведение называется членом определителя. В каждом члене определителя второго порядка расположим множители в порядке следования столбцов:

и рассмотрим соответствующие расположения (перестановки) нижних индексов (указывающих номера строк):

В первом произведении эти индексы расположены по возрастанию, и соответствующее произведение входит в определитель со знаком плюс; во втором они, как говорят, образуют беспорядок, или инверсию, 2, 1, и соответствующий член входит в определитель со знаком минус.

В определителе третьего порядка шесть членов. Если в каждом из них расположить множители в порядке следования столбцов, то в членах, входящих со знаком плюс, нижние индексы образуют перестановки

Рассмотрим три пары индексов 1, 2; 1, 3 и 2, 3 из первой перестановки 1, 2, 3; числа каждой пары расположены по возрастанию - в этой перестановке нуль инверсий. Во второй перестановке 2, 3, 1 три пары индексов: 2, 3; 2, 1 и 3, 1, две из которых и 3,1, образуют инверсии. В третьей перестановке 3, 1, 2 - три пары индексов 3, 1; 1, 2 и 3, 2, из которых две и 3, 2, образуют инверсии.

Произведениям, входящим со знаком минус, соответствуют три перестановки индексов

причем в первой, как нетрудно видеть, три инверсии:

3, 2; 3, 1 и 2, 1, а во второй и третьей - по одной; соответственно 2, 1 и 3, 2. Таким образом, со знаком плюс входят те члены, у которых в перестановке индексов четное число инверсий, а со знаком минус - те, у которых это число нечетно.

Для дальнейшего нам будет удобно ввести для определителей второго и третьего порядков новые обозначения:

где все элементы определителя обозначены одной и той же буквой а с двумя индексами, первый из которых указывает номер строки, в которой стоит этот элемент, а второй - номер соответствующего столбца. (Элементы,

Например, первого определителя читаются так: а один один, а один два, а два один, а два два.) Тогда

где знак плюс стоит перед теми произведениями, в которых перестановка четная (т. е. имеет четное число инверсий), и знак минус - перед теми, где она нечетна. Это можно записать еще и так:

где а есть число инверсий в перестановке первых индексов, (вторые индексы расположены в порядке возрастания), а суммирование распространяется на все шесть перестановок из трех чисел 1, 2, 3.

В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

Какое уравнение будет называться уравнением с двумя переменными?

Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

Уравнение с двумя неизвестными может:

а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

Разложение на множители

Пример 1.

Решить уравнение: xy – 2 = 2x – y.

Решение.

Группируем слагаемые с целью разложения на множители:

(xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Имеем:

y = 2, x – любое действительное число или x = -1, y – любое действительное число.

Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

Равенство нулю неотрицательных чисел

Пример 2.

Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

Решение.

Группируем:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

(3x – 2) 2 + (2y – 3) 2 = 0.

Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

А значит, x = 2/3 и y = 3/2.

Ответ: (2/3; 3/2).

Оценочный метод

Пример 3.

Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Решение.

В каждой скобке выделим полный квадрат:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

(x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

(x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

Ответ: (-1; 2).

Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

Пример 4.

Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

Решение.

Решим уравнение как квадратное относительно x. Найдем дискриминант:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

Ответ: (3; 4).

Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

Пример 5.

Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

Решение.

Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

Ответ: нет корней.

Пример 6.

Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Решение.

Выделим полные квадраты в каждой скобке:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

Ответ: (2; -3) и (-2; -3).

Пример 7.

Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

Решение.

Выделим полные квадраты:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

(x – y) 2 = 36 и (y + 2) 2 = 1

(x – y) 2 = 1 и (y + 2) 2 = 36.

Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Ответ: -17.

Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Системой линейных уравнений называется совокупность рассматриваемых совместно нескольких линейных уравнений.

В системе может быть любое число уравнений с любым числом неизвестных.

Решением системы уравнений называется совокупность значений неизвестных, удовлетворяющая всем уравнениям системы, то есть обращающая их в тождества.

Система, имеющая решение, называется совместной, в противном случае – несовместной.

Для решения системы применяют различные методы.

Пусть
(число уравнений равно числу неизвестных).

Метод Крамера

Рассмотрим решение системы трёх линейных уравнений с тремя неизвестными:

(7)

Для нахождения неизвестных
применим формулу Крамера:

(8)

где - определитель системы, элементы которого есть коэффициенты при неизвестных:

.

получается путём замены первого столбца определителя столбцом свободных членов:

.

Аналогично:

;
.

Пример 1. Решить систему по формуле Крамера:

.

Решение: Воспользуемся формулами (8):

;

;

;

;

Ответ:
.

Для любой системы линейных уравнений снеизвестными можно утверждать:


Матричный способ решения

Рассмотрим решение системы (7) трёх линейных уравнений с тремя неизвестными матричным способом.

Используя правила умножения матриц, данную систему уравнений можно записать в виде:
, где

.

Пусть матрица невырожденная, т.е.
. Умножая обе части матричного уравнения слева на матрицу
, обратную матрице, получим:
.

Учитывая, что
, имеем

(9)

Пример 2. Решить систему матричным способом:

.

Решение: Введём матрицы:

- из коэффициентов при неизвестных;

- столбец свободных членов.

Тогда систему можно записать матричным уравнением:
.

Воспользуемся формулой (9). Найдём обратную матрицу
по формуле (6):

;

.

Следовательно,

Получили:

.

Ответ:
.

Метод последовательного исключения неизвестных (метод Гаусса)

Основная идея применяемого метода заключается в последовательном исключении неизвестных. Поясним смысл этого метода на системе трёх уравнений с тремя неизвестными:

.

Допустим, что
(если
, то изменим порядок уравнений, выбрав первым уравнением то, в котором коэффициент прине равен нулю).

Первый шаг: а) делим уравнение
на
; б) умножаем полученное уравнение на
и вычитаем из
; в) затем полученное умножаем на
и вычитаем из
. В результате первого шага будем иметь систему:


,


Второй шаг: поступаем с уравнением
и
точно так же, как с уравнениями
.

В итоге исходная система преобразуется к так называемому ступенчатому виду:

Из преобразованной системы все неизвестные определяются последовательно без труда.

Замечание. Практически удобнее приводить к ступенчатому виду не саму систему уравнений, а матрицу из коэффициентов, при неизвестных, и свободных членов.

Пример 3. Решить методом Гаусса систему:

.

Переход от одной матрицы к другой будем записывать при помощи знака эквивалентности ~.

~
~
~
~

~
.

По полученной матрице выписываем преобразованную систему:

.

Ответ:
.

Замечание: Если система имеет единственное решение, то ступенчатая система приводится к треугольной, то есть к такой, в которой последнее уравнение будет содержать одно неизвестное. В случае неопределённой системы, то есть такой, в которой число неизвестных больше числа линейно независимых уравнений, треугольной системы не будет, так как последнее уравнение будет содержать более одного неизвестного (система имеет бесчисленное множество решений). Когда же система несовместна, то, после приведения её к ступенчатому виду, она будет содержать хотя бы одно значение вида
, то есть уравнение, в котором все неизвестные имеют нулевые коэффициенты, а правая часть отлична от нуля (система решений не имеет). Метод Гаусса применим к произвольной системе линейных уравнений (при любых
и).

      Теорема существования решения системы линейных уравнений

При решении системы линейных уравнений методом гаусса ответ на вопрос, совместна или несовместна данная система может быть дан лишь в конце вычислений. Однако часто бывает важно решить вопрос о совместности или несовместности системы уравнений, не находя самих решений. Ответ на этот вопрос даёт следующая теорема Кронекера-Капелли.

Пусть дана система
линейных уравнений снеизвестными:

(10)

Для того, чтобы система (10) была совместной, необходимо и достаточно чтобы ранг матрицы системы

.

был равен рангу её расширенной матрицы

.

Причём, если
, то система (10) имеет единственное решение; если же
, то система имеет бесчисленное множество решений.

Рассмотрим однородную систему (все свободные члены равны нулю) линейных уравнений:

.

Эта система всегда совместна, так как она имеет нулевое решение .

В следующей теореме даны условия, при которых система имеет также решения, отличные от нулевого.

Терема. Для того, чтобы однородная система линейчатых уравнений имела нулевое решение, необходимо и достаточно, чтобы её определитель был равен нулю:

.

Таким образом, если
, то решение- единственное. Если
, то существует бесконечноё множество других ненулевых решений. Укажем один из способов отыскания решений для однородной системы трёх линейных уравнений с тремя неизвестными в случае
.

Можно доказать, что если
, а первое и второе уравнения непропорциональны (линейно независимы), то третье уравнение есть следствие первых двух. Решение однородной системы трёх уравнений с тремя неизвестными сводится к решению двух уравнений с тремя неизвестными. Появляется так называемое свободное неизвестное, которому можно придавать произвольные значения.

Пример 4. Найти все решения системы:

.

Решение. Определитель этой системы

.

Поэтому система имеет нулевые решения. Можно заметить, что первые два уравнения, например, непропорциональны, следовательно, они линейно независимые. Третье является следствием первых двух (получается, если к первому уравнению прибавить удвоенное второе). Отбросив его, получим систему двух уравнений с тремя неизвестными:

.

Полагая, например,
, получим

.

Решая систему двух линейных уравнений, выразим ичерез:
. Следовательно, решение системы можно записать в виде:
, где- произвольное число.

Пример 5. Найти все решения системы:

.

Решение. Нетрудно видеть, что в данной системе только одно независимое уравнение (два других ему пропорциональны). Система из трёх уравнений с тремя неизвестными свелась к одному уравнению с тремя неизвестными. Появляются два свободных неизвестных. Найдя, например, из первого уравнения
при произвольныхи, получим решения данной системы. Общих вид решения можно записать, гдеи- произвольные числа.

      Вопросы для самопроверки

Сформулируйте правило Крамера для решения системы линейных уравнений снеизвестными.

В чём сущность матричного способа решения систем?

В чём заключается метод Гаусса решения системы линейных уравнений?

Сформулируйте теорему Кронекера-Капелли.

Сформулируйте необходимое и достаточноё условие существования ненулевых решений однородной системы линейных уравнений.

      Примеры для самостоятельного решения

Найдите все решения систем:

1.
; 2.
;

3.
; 4.
;

5.
; 6.
;

7.
; 8.
;

9.
; 10.
;

11.
; 12.
;

13.
; 14.
;

15.
.

Определите, при каких значениях исистема уравнений

а) имеет единственное решение;

б) не имеет решения;

в) имеет бесконечно много решений.

16.
; 17.
;

Найти все решения следующих однородных систем:

18.
; 19.
;

20.
; 21.
;

22.
; 23.
;

      Ответы к примерам

1.
; 2.
; 3. Ǿ; 4. Ǿ;

5.
- произвольное число.

6.
, где- произвольное число.

7.
; 8.
; 9. Ǿ; 10. Ǿ;

11.
, где- произвольное число.

12. , гдеи- произвольные числа.

13.
; 14.
гдеи- произвольные числа.

15. Ǿ; 16. а)
; б)
; в)
.

17. а)
; б)
; в)
;

18.
; 19.
; 20., где- произвольное число.

21. , где- произвольное число.

22. , где- произвольное число.

23. , гдеи- произвольные числа.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода уравнений

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

При вводе уравнений можно использовать скобки . При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p - 2&1/8q)


Решить систему уравнений

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;



$$ \left\{ \begin{array}{l} 3x+y=7 \\ -5x+2y=3 \end{array} \right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\{ \begin{array}{l} y = 7-3x \\ -5x+2(7-3x)=3 \end{array} \right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$

Пара (1;4) - решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными . Системы, не имеющие решений, также считают равносильными.

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений - способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ \left\{ \begin{array}{l} 2x+3y=-5 \\ x-3y=38 \end{array} \right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\{ \begin{array}{l} 3x=33 \\ x-3y=38 \end{array} \right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \(x-3y=38 \) получим уравнение с переменной y: \(11-3y=38 \). Решим это уравнение:
\(-3y=27 \Rightarrow y=-9 \)

Таким образом мы нашли решение системмы уравнений способом сложения: \(x=11; y=-9 \) или \((11; -9) \)

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач
Loading...Loading...