Ядерные реакторы на быстрых нейтронах. Отработавшее ядерное топливо тепловых реакторов

December 25th, 2013

Этап физического пуска реактора БН-800 на быстрых нейтронах началсясегодня на Белоярской АЭС, сообщил РИА Новости представитель Росэнергоатома.

В ходе этого этапа, который может продлиться несколько недель, реактор будет заполнен жидким натрием и затем в него будет загружено ядерное топливо. Представитель Росэнергоатома пояснил, что по завершении физического пуска энергоблок будет признан ядерной установкой.

Энергоблок №4 с реактором БН-800 Белоярской атомной электростанции (БАЭС) выйдет на полную мощность к концу 2014 года, сообщил журналистам в среду первый замгендиректора госкорпорации «Росатом» Александр Локшин.

«На полную мощность блок должен выйти к концу года», - сказал он, уточнив, что речь идет о конце 2014 года.

По его словам, в настоящее время идет заполнение контура натрием, окончание физического пуска планируется к середине апреля. По его словам, энергоблок готов к физическому пуску на 99,8%. Как отметил гендиректор ОАО «Концерн Росэнергоатом» Евгений Романов, в конце лета намечен энергопуск объекта.

Энергоблок с реактором БН-800 является развитием уникального реактора БН-600 на Белоярской АЭС, который находится около 30 лет в опытно-промышленной эксплуатации. Технологиями реакторов на быстрых нейтронах в мире обладают очень небольшое количество стран, и Россия является мировым лидером в этом направлении.

Давайте узнаем о нем подробнее …

Реакторный (центральный) зал БН-600

В 40 км от Екатеринбурга, посреди красивейших уральских лесов расположен городок Заречный. В 1964 году здесь была запущена первая советская промышленная АЭС – Белоярская (с реактором АМБ-100 мощностью 100 МВт). Сейчас Белоярская АЭС осталась единственной в мире, где работает промышленный энергетический реактор на быстрых нейтронах – БН-600

Представьте себе кипятильник, который испаряет воду, а образовавшийся пар крутит турбогенератор, вырабатывающий электроэнергию. Примерно так в общих чертах и устроена атомная электростанция. Только «кипятильник» – это энергия атомного распада. Конструкции энергетических реакторов могут быть различными, но по принципу работы их можно разделить на две группы – реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

В основе любого реактора лежит деление тяжелых ядер под действием нейтронов. Правда, есть и существенные отличия. В тепловых реакторах уран-235 делится под действием низкоэнергетических тепловых нейтронов, при этом образуются осколки деления и новые нейтроны, имеющие высокую энергию (так называемые быстрые нейтроны). Вероятность поглощения ядром урана-235 (с последующим делением) теплового нейтрона гораздо выше, чем быстрого, поэтому нейтроны нужно замедлить. Это делается с помощью замедлителей– веществ, при столкновениях с ядрами которых нейтроны теряют энергию.

Топливом для тепловых реакторов обычно служит уран невысокого обогащения, в качестве замедлителя используются графит, легкая или тяжелая вода, а теплоносителем является обычная вода. По одной из таких схем устроены большинство функционирующих АЭС.

Быстрые нейтроны, образующиеся в результате вынужденного деления ядер, можно использовать и без какого-либо замедления. Схема такова: быстрые нейтроны, образовавшиеся при делении ядер урана-235 или плутония-239, поглощаются ураном-238 с образованием (после двух бета-распадов) плутония-239. Причем на 100 разделившихся ядер урана-235 или плутония-239 образуется 120–140 ядер плутония-239. Правда, поскольку вероятность деления ядер быстрыми нейтронами меньше, чем тепловыми, топливо должно быть обогащенным в большей степени, чем для тепловых реакторов. Кроме того, отводить тепло с помощью воды здесь нельзя (вода– замедлитель), так что приходится использовать другие теплоносители: обычно это жидкие металлы и сплавы, от весьма экзотических вариантов типа ртути (такой теплоноситель был использован в первом американском экспериментальном реакторе Clementine) или свинцово-висмутовых сплавов (использовались в некоторых реакторах для подводных лодок– в частности, советских лодок проекта 705) до жидкого натрия (самый распространенный в промышленных энергетических реакторах вариант). Реакторы, работающие по такой схеме, называются реакторами на быстрых нейтронах. Идея такого реактора была предложена в 1942 году Энрико Ферми. Разумеется, самый горячий интерес проявили к этой схеме военные: быстрые реакторы в процессе работы вырабатывают не только энергию, но и плутоний для ядерного оружия. По этой причине реакторы на быстрых нейтронах называют также бридерами (от английского breeder– производитель).

Зигзаги истории

Интересно, что история мировой атомной энергетики началась именно с реактора на быстрых нейтронах. 20 декабря 1951 года в Айдахо заработал первый в мире энергетический реактор на быстрых нейтронах EBR-I (Experimental Breeder Reactor) электрической мощностью всего 0,2 МВт. Позднее, в 1963 году, недалеко от Детройта была запущена АЭС с реактором на быстрых нейтронах Fermi – уже мощностью около 100 МВт (в 1966 году там произошла серьезная авария с расплавлением части активной зоны, но без каких-либо последствий для окружающей среды или людей).

В СССР этой темой с конца 1940-х годов занимался Александр Лейпунский, под руководством которого в Обнинском физико-энергетическом институте (ФЭИ) были разработаны основы теории быстрых реакторов и построены несколько экспериментальных стендов, что позволило изучить физику процесса. В результате проведенных исследований в 1972 году вступила в строй первая советская АЭС на быстрых нейтронах в городе Шевченко (ныне Актау, Казахстан) с реактором БН-350 (изначально обозначался БН-250). Она не только вырабатывала электроэнергию, но и использовала тепло для опреснения воды. Вскоре были запущены французская АЭС с быстрым реактором Phenix (1973) и британская с PFR (1974), обе мощностью 250 МВт.

Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985–1997), Monju (Япония, 1994–1995) и БН-600 (Белоярская АЭС, 1980), который в настоящий момент является единственным в мире действующим промышленным энергетическим реактором.

Строительство БН-800

Они возвращаются

Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране – всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!

Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Гладко только на бумаге

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии – от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, – объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. – Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, – оно лишь чуть выше атмосферного».

По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы – как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».

«Проблемы действительно были одни и те же, – добавляет директор Белоярской АЭС Николай Ошканов, – но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,– открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Быстрое будущее

«В мире не было бы такого интереса к технологии быстрых реакторов, если бы не успешная многолетняя эксплуатация нашего БН-600, – говорит Николай Ошканов.– Развитие атомной энергетики, на мой взгляд, в первую очередь связано с серийным производством и эксплуатацией именно быстрых реакторов. Только они позволяют вовлечь в топливный цикл весь природный уран и таким образом увеличить эффективность, а также в десятки раз уменьшить количество радиоактивных отходов. В этом случае будущее атомной энергетики будет действительно светлым».

Реактор на быстрых нейтронах БН-800 (вертикальный разрез)
Что у него внутри

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями

370 топливных сборок образуют три зоны с различным обогащением по урану-235 – 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).

Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) – трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.

В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней – головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.

Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» – фотонейтронный источник (гамма-излучатель плюс бериллий).

Как устроен реактор БН-600

Реактор имеет интегральную компоновку, то есть в корпусе реактора расположена активная зона (1), а также три петли (2) первого контура охлаждения, каждая из которых имеет свой главный циркуляционный насос (3) и два промежуточных теплообменника (4). Теплоносителем служит жидкий натрий, который прокачивается через активную зону снизу вверх и разогревается с 370 до 550°С

Проходя через промежуточные теплообменники, он передает тепло натрию во втором контуре (5), который уже поступает в парогенераторы (6), где испаряет воду и перегревает пар до температуры 520°С (при давлении 130 атм). Пар подается на турбины поочередно в цилиндры высокого (7), среднего (8) и низкого (9) давления. Отработанный пар конденсируется за счет охлаждения водой (10) из пруда-охладителя и вновь поступает в парогенераторы. Три турбогенератора (11) Белоярской АЭС выдают 600 МВт электрической мощности. Газовая полость реактора заполнена аргоном под очень небольшим избыточным давлением (около 0,3 атм).

Перегрузка вслепую

В отличие от тепловых реакторов, в реакторе БН-600 сборки находятся под слоем жидкого натрия, поэтому извлечение отработавших сборок и установка на их место свежих (этот процесс называют перегрузкой) происходит в полностью закрытом режиме. В верхней части реактора расположены большая и малая поворотные пробки (эксцентричные относительно друг друга, то есть их оси вращения не совпадают). На малой поворотной пробке смонтирована колонна с системами управления и защиты, а также механизмом перегрузки с захватом типа цангового. Поворотный механизм снабжен «гидрозатвором» из специального легкоплавкого сплава. В нормальном состоянии он твердый, а для перезагрузки его разогревают до температуры плавления, при этом реактор остается полностью герметичным, так что выбросы радиоактивных газов практически исключены.

Процесс перегрузки одной сборки занимает до часа, перегрузка трети активной зоны (около 120 ТВС) занимает около недели (в три смены), такая процедура выполняется каждую микрокампанию (160 эффективных суток, в пересчете на полную мощность). Правда, сейчас выгорание топлива увеличили, и перегружается только четверть активной зоны (примерно 90 ТВС). При этом оператор не имеет непосредственной визуальной обратной связи и ориентируется только по показателям датчиков углов поворота колонны и захватов (точность позиционирования – менее 0,01 градуса), усилий извлечения и постановки. На работу механизма в целях безопасности накладываются определенные ограничения: например, нельзя одновременно освобождать две соседние ячейки, кроме того, при перегрузке все стержни управления и защиты должны находиться в активной зоне.

В 1983 г. на базе БН-600 предприятием был разработан проект усовершенствованного реактора БН-800 для энергоблока мощностью 880 МВт(э). В 1984 г. были начаты работы по сооружению двух реакторов БН-800 на Белоярской и новой Южно-Уральской АЭС. Последующая задержка сооружения этих реакторов была использована для доработки проекта с целью дальнейшего повышения его безопасности и улучшения технико-экономических показателей. Работы по сооружению БН-800 были возобновлены в 2006 г. на Белоярской АЭС (4-й энергоблок) и должны быть завершены в 2014 г.

Перед строящимся реактором БН-800 поставлены следующие важные задачи:

  • Обеспечение эксплуатации на MOX-топливе.
  • Экспериментальная демонстрация ключевых компонентов закрытого топливного цикла.
  • Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введенных для повышения показателей экономичности, надежности и безопасности.
  • Разработка инновационных технологий для будущих реакторов на быстрых нейтронах с жидкометаллическим теплоносителем:
    • испытания и аттестация перспективного топлива и конструкционных материалов;
    • демонстрация технологии выжигания минорных актинидов и трансмутации долгоживущих продуктов деления, составляющих наиболее опасную часть радиоактивных отходов атомной энергетики.

Ведётся разработка проекта усовершенствованного коммерческого реактора БН-1200 мощностью 1220 МВт.

Реактор БН-1200 (вертикальный разрез)

Планируется следующая программа реализации этого проекта:

  • 2010…2016 гг. – разработка техпроекта реакторной установки и выполнение программы НИОКР.
  • 2020 г. – ввод в действие головного энергоблока на МОХ- топливе и организация его централизованного производства.
  • 2023…2030 гг. – ввод в эксплуатацию серии энергоблоков суммарной мощностью около 11 ГВт.

Нейтроны?

Нейтроны — это частицы, входящие в состав большинства атомных ядер наряду с протонами. В ходе реакции ядерного распада ядро урана делится на две части и вдобавок испускает несколько нейтронов. Они могут попасть в другие атомы и спровоцировать еще одну или несколько реакций деления. Если каждый выпущенный при распаде ядер урана нейтрон будет попадать в соседние атомы, то начнется лавинообразная цепочка реакций с выделением все большей и большей энергии. При отсутствии сдерживающих факторов произойдет ядерный взрыв.

Но в ядерном реакторе часть нейтронов либо выходит наружу, либо поглощается специальными поглотителями. Поэтому число реакций деления все время остается одним и тем же, ровно таким, какое необходимо для получения энергии. Энергия реакции радиоактивного распада дает тепло, которое затем используется для получения крутящего турбины электростанции пара.

Нейтроны, которые поддерживают ядерную реакцию на постоянном уровне, могут иметь разную энергию. В зависимости от энергии их называют либо тепловыми, либо быстрыми (есть еще холодные, но те для АЭС не годятся). Большинство реакторов в мире основаны на использовании тепловых нейтронов, а вот на Белоярской АЭС стоит реактор на быстрых. Почему?

В чем преимущества?

В реакторе на быстрых нейтронах часть энергии нейтронов идет, как и в обычных реакторах, на поддержание реакции деления основного компонента ядерного топлива, урана-235. А еще часть энергии поглощается оболочкой, сделанной из урана-238 или тория-232. Эти элементы для обычных реакторов бесполезны. Когда в их ядра попадают нейтроны, они превращаются в изотопы, пригодные для использования в ядерной энергетике в качестве топлива: плутоний-239 или уран-233.

Обогащенный уран. В отличие от отработанного ядерного топлива уран далеко не столь радиоактивен, чтобы с ним приходилось работать только при помощи роботов. Его даже можно ненадолго брать руками в плотных перчатках. Фото: Департамент энергетики США


Таким образом, реакторы на быстрых нейтронах можно использовать не только для энергоснабжения городов и заводов, но и для получения нового ядерного топлива из сравнительно недорого сырья. В пользу экономической выгоды говорят такие факты: килограмм выплавленного из руды урана стоит около полусотни долларов, содержит всего два грамма урана-235, а остальное приходится на уран-238.

Однако реакторы на быстрых нейтронах в мире практически не используются. БН-600 можно считать уникальным. Ни японский «Мондзю», ни французский «Феникс», ни ряд экспериментальных реакторов США и Великобритании сейчас не работают: реакторы на тепловых нейтронах оказались проще в сооружении и эксплуатации. На пути к реакторам, которые смогут сочетать производство энергии с производством ядерного топлива, стоит ряд препятствий. И как минимум часть препятствий конструкторы БН-600, судя по его успешной эксплуатации в течение 35 лет, смогли обойти.

В чем проблема?

В натрии. В любом ядерном реакторе обязательно должно быть несколько узлов и элементов: тепловыделяющие сборки с ядерным топливом, элементы для управления ядерной реакцией и теплоноситель, который забирает выделяющееся в устройстве тепло. Конструкция этих узлов, состав топлива и теплоносителя могут отличаться, но без них реактор невозможен по определению.

В реакторе на быстрых нейтронах в качестве теплоносителя нужно использовать материал, который не задерживает нейтроны, иначе они из быстрых станут медленными, тепловыми. На заре атомной энергетики конструкторы попробовали использовать ртуть, но она растворила трубы внутри реактора и начала протекать наружу. Нагретый ядовитый металл, который к тому же стал под действием облучения радиоактивным, причинил так много хлопот, что проект ртутного реактора быстро закрыли.

Кусочки натрия хранят обычно под слоем керосина. Эта жидкость хоть и горюча, с натрием не реагирует и не пускает к нему пары воды из воздуха. Фото: Superplus / Wikipedia


В БН-600 используется жидкий натрий. На первый взгляд, натрий немногим лучше ртути: он чрезвычайно активен химически, бурно реагирует с водой (проще говоря, взрывается, если кинуть в воду) и вступает в реакцию даже с входящими в состав бетона веществами. Однако он не мешает нейтронам, а при должном уровне строительных работ и последующего техобслуживания риск утечки не так уж велик. Кроме того, натрий, в отличие от водяного пара, можно перекачивать при нормальном давлении. Струя пара из прорвавшегося паропровода под давлением в сотни атмосфер режет металл, так что в этом смысле натрий безопаснее. А что касается химической активности, то и ее можно обратить во благо. В случае аварии натрий реагирует не только с бетоном, но и с радиоактивным йодом. Йодид натрия уже не покидает пределы здания АЭС, в то время как на газообразный йод пришлась едва ли не половина выбросов при аварии на АЭС в Фукусиме.

Советские инженеры, разрабатывавшие реакторы на быстрых нейтронах, сначала построили опытный БР-2 (тот самый неудачный, ртутный), а потом экспериментальные же БР-5 и БОР-60 с натрием вместо ртути. Полученные на них данные позволили спроектировать первый промышленный «быстрый» реактор БН-350, который использовался на уникальном атомном химико-энергетическом комбинате — АЭС, совмещенной с опреснителем морской воды. На Белоярской АЭС построили уже второй по счету реактор типа БН — «быстрый, натриевый».

Несмотря на накопленный к моменту запуска БН-600 опыт, первые годы были омрачены серией утечек жидкого натрия. Ни одно из этих происшествий не несло радиационной угрозы для населения и не приводило к серьезному облучению персонала станции, а с начала 1990-х годов утечки натрия вовсе прекратились. Для помещения этого в мировой контекст отметим, что на японском «Мондзю» в 1995 произошла серьезная утечка жидкого натрия, которая привела к пожару и остановке станции на 15 лет. Воплотить идею реактора на быстрых нейтронах в промышленном, а не экспериментальном устройстве удалось только советским конструкторам, опыт которых позволил российским атомщикам разработать и построить реактор следующего поколения — БН-800.

БН-800 уже построен. 27 июня 2014 года реактор заработал на минимальной мощности, а в 2015 году ожидается и энергетический пуск. Поскольку запуск ядерного реактора представляет собой весьма сложный процесс, специалисты разделяют физический пуск (начало самоподдерживающейся цепной реакции) и энергетический пуск, при котором энергоблок начинает выдавать в сеть первые мегаватты электроэнергии.

Белоярская АЭС, пульт управления. Фото с официального сайта: http://www.belnpp.rosenergoatom.ru


В БН-800 конструкторы воплотили ряд важных усовершенствований, включая, к примеру, аварийную систему воздушного охлаждения реактора. Ее достоинством разработчики называют независимость от источников энергии. Если, как на Фукусиме, на АЭС исчезнет электричество, то охлаждающий реактор поток все равно не исчезнет — циркуляция будет поддерживаться естественным путем, за счет конвекции, поднятия вверх нагретого воздуха. А если вдруг произойдет расплавление активной зоны, то радиоактивный расплав уйдет не вовне, а в специальную ловушку. Наконец, защитой от перегрева выступает большой запас натрия, который в случае аварии может принять выделяемое тепло даже при полном отказе всех систем охлаждения.

Вслед за БН-800 предполагается построить и реактор БН-1200, еще большей мощности. Разработчики рассчитывают, что их детище станет серийным реактором и будет применяться не только на Белоярской АЭС, но и на других станциях. Впрочем, пока это планы — для крупномасштабного перехода на реакторы на быстрых нейтронах еще предстоит решить ряд проблем.

Белоярская АЭС, строительная площадка нового энергоблока. Фото с официального сайта: http://www.belnpp.rosenergoatom.ru


В чем проблема?

В экономике и экологии топлива. Реакторы на быстрых нейтронах работают на смеси обогащенной окиси урана и окиси плутония — это так называемое мокс-топливо. Теоретически оно может быть дешевле обычного в силу того, что использует плутоний или уран-233 из облученного в других реакторах недорогого урана-238 или тория, но пока мокс-топливо проигрывает в цене обычному. Получается своего рода замкнутый круг, который не так просто разорвать: нужно отладить и технологию постройки реакторов, и извлечение плутония с ураном из облученного в реакторе материала, и обеспечить контроль за нераспространением высокоактивных материалов. Некоторые экологи, к примеру представители некоммерческого центра «Беллона» , указывают на большой объем получаемых при переработке облученного материала отходов, ведь наряду с ценными изотопами в реакторе на быстрых нейтронах образуется значительное количество радионуклидов, которые нужно где-то захоранивать.

Иными словами, даже успешная эксплуатация реактора на быстрых нейтронах сама по себе еще не гарантирует революции в атомной энергетике. Она является необходимым, но не достаточным условием для того, чтобы все-таки перейти с ограниченных запасов урана-235 на куда более доступные уран-238 и торий-232. Смогут ли технологи, занятые процессами переработки ядерного топлива и утилизацией ядерных отходов, справиться со своими задачами — тема для отдельного рассказа.

В предыдущих статьях - мы выяснили, что ни солнечная энергетика не сможет удовлетворить потребности человечества (из-за быстрого выхода из строя аккумуляторов и их стоимости), ни термоядерная (т.к. даже после достижения на экспериментальных реакторах положительного выхода энергии - остается фантастическое количество проблем на пути коммерческого использования). Что же остается?

Уже не первую сотню лет, не смотря на весь прогресс человечества, основной объем электроэнергии получается от банального сжигания угля (который до сих пор является источником энергии для 40.7% генерирующих мощностей в мире), газа (21.2%), нефтепродуктов (5.5%) и гидроэнергетики (еще 16.2%, в сумме все это - 83.5% по ).

Остается - ядерная энергетика, с обычными реакторами на тепловых нейтронах (требующих редкий и дорогой U-235) и с реакторами на быстрых нейтронах (которые могут перерабатывать природный U-238 и торий в «замкнутом топливном цикле»).

Что это за мифический «замкнутый топливный цикл», в чем отличия реакторов на быстрых и тепловых нейтронах, какие существуют конструкции, когда нам от всего этого ждать счастья и конечно - вопрос безопасности - под катом.

О нейтронах и уране

Всем нам в школе рассказывали, что U-235 при попадании в него нейтрона - делится с выделением энергии, и вылетают еще 2-3 нейтрона. В реальности конечно все несколько сложнее, и процесс этот сильно зависит от энергии этого начального нейтрона. Посмотрим на графики сечения (=вероятности) реакции захвата нейтрона (U-238 + n -> U-239 и U-235 + n -> U-236), и реакции деления для U-235 и U-238 в зависимости от энергии (=скорости) нейтронов:




Как видим, вероятность захвата нейтрона с делением для U-235 - растет с понижением энергии нейтрона, потому в обычных ядерных реакторах нейтроны «замедляют» в графите/воде до такой степени, что их скорость становится того же порядка, как и скорость теплового колебания атомов в кристаллической решетке (отсюда и название - тепловые нейтроны). А вероятность деления U-238 тепловыми нейтронами - в 10млн раз меньше U-235, потому и приходится природный уран тоннами перерабатывать, чтобы наковырять U-235.

Кто-то посмотрев на нижний график может сказать: О, отличная идея! А давайте 10MeV нейтронами дешевый U-238 прожаривать - должна же получится цепная реакция, ведь там как раз график сечения для деления идет вверх! Но тут есть проблема - нейтроны, выделяющиеся в результате реакции имеют энергию всего 2MeV и менее (в среднем ~1.25), и этого не достаточно, чтобы запустить самоподдерживающуюся реакцию на быстрых нейтронах в U-238 (нужна или энергия больше, или чтобы больше нейтронов вылетало с каждого деления). Эх, не повезло человечеству в этой вселенной…

Впрочем, если бы так просто получалась самоподдерживающаяся реакция на быстрых нейтронах в U-238 - были бы и природные ядерные реакторы, как это было с U-235 в Окло , и соответственно U-238 в природе в виде крупных месторождений не встречался бы.

Наконец, если отказаться от «самоподдерживаемости» реакции - делить U-238 напрямую с получением энергии все-же можно. Это например используется в термоядерных бомбах - нейтроны с энергией 14.1MeV от реакции D+T делят U-238 в оболочке бомбы - и таким образом можно практически бесплатно увеличить мощность взрыва. В контролируемых условиях - остается теоретическая возможность совмещения термоядерного реактора и бланкета (оболочки) из U-238 - чтобы энергию термоядерного синтеза увеличить в ~10-50 раз за счет реакции деления.

Но как же делить U-238 и торий в самоподдерживающейся реакции?

Замкнутый топливный цикл

Идея следующая: посмотрим не на сечение деления, а на сечение захвата: При подходящей энергии нейтрона (не слишком маленькая, и не слишком большая) U-238 может захватить нейтрон, и после 2-х распадов - стать плутонием-239:

Из отработанного топлива - плутоний можно выделить химическим путем, и сделать MOX-топливо (смесь оксидов плутония и урана) которое можно сжечь как в быстрых реакторах, так и в обычных, тепловых. Процесс химической переработки отработанного топлива - может быть весьма трудным из-за его высокой радиоактивности, и пока решен не полностью и не отработан практически (но работа идет).

Для природного тория - аналогичный процесс, торий захватывает нейтрон, и после спонтанного деления - становится ураном-233, который делится примерно также, как и уран-235 и выделяется из отработанного топлива химическим путем:

Эти реакции конечно идут и в обычных тепловых реакторах - но из-за замедлителя (которые сильно снижают шанс захвата нейтрона) и управляющих стержней (которые поглощают часть нейтронов) количество сгенерированного плутония - меньше, чем сгорает урана-235. Для того, чтобы генерировать больше делящихся веществ, чем их сгорает - нужно как можно меньше нейтронов терять на управляющих стержнях (например используя управляющие стержни из обычного урана), конструкции, теплоносителе (об это ниже) и полностью избавиться от замедлителя нейтронов (графита или воды).

Из-за того, что сечение деления быстрыми нейтронами - меньше, чем тепловыми - приходится повышать концентрацию делящегося вещества (U-235, U-233, Pu-239) в ядре реактора с 2-4 до 20% и выше. А наработка нового топлива - ведется в кассетах с торием/природным ураном, расположенных вокруг этого ядра.

По счастливой случайности, если деление вызвано быстрым нейтроном, а не тепловым - в результате реакции выделяется в ~1.5 раза больше нейтронов, чем в случае деления тепловыми нейтронами - что делает реакцию более реалистичной:

Именно это увеличение количества генерируемых нейтронов и обеспечивает возможность наработки бОльшего количества топлива, чем его было изначально. Конечно, новое топливо берется не из воздуха, а нарабатывается из «бесполезного» U-238 и тория.

О теплоносителе

Как мы выяснили выше - воду в быстром реакторе использовать нельзя - она чрезвычайно эффективно замедляет нейтроны. Чем её можно заменить?

Газы: Можно охлаждать реактор гелием. Но из-за небольшой теплоемкости - мощные реакторы охладить таким образом сложно.

Жидкие металлы: Натрий, калий - широко используются в быстрых реакторах по всему миру. Из плюсов - низкая температура плавления и работа при около-атмосферном давлении, но эти металлы очень хорошо горят и реагируют с водой. Единственный в мире действующий энергетический реактор БН-600 - работает именно на натриевом теплоносителе.

Свинец, висмут - используются в разрабатываемых сейчас в России реакторов БРЕСТ и СВБР . Из очевидных минусов - если реактор охладился ниже температуры замерзания свинца/висмута - разогревать его очень сложно и долго (о не очевидных - можно почитать по ссылке в вики). В общем, технологических вопросов на пути реализации остается много.

Ртуть - с ртутным теплоносителем был реактор БР-2, но как оказалось, ртуть относительно быстро растворяет конструкционные материалы реактора - так что больше ртутные реакторы не строили.

Экзотика: Отдельная категория - реакторы на расплавленных солях - LFTR - работают на разных вариантах фторидов делящихся материалов (урана, тория, плутония). 2 «лабораторных» реактора были построены в США в Oak Ridge National Laboratory в 60-х годах, и с тех времен других реакторов пока реализовано не было, хотя проектов много.

Действующие реакторы и интересные проекты

Российский БОР-60 - опытный реактор на быстрых нейтронах, действует с 1969 года. На нем в частности тестируют элементы конструкций новых реакторов на быстрых нейтронов.

Российские БН-600, БН-800 : Как уже упоминалось выше, БН-600 - единственный энергетический реактор на быстрых нейтронах в мире. Работает с 1980-го года, пока на уране-235.

В 2014-м году - планируется к запуску более мощный БН-800 . На нем уже планируется начинать использовать MOX топливо (с плутонием), и начать отрабатывать замкнутый топливный цикл (с переработкой и сжиганием нарабатываемого плутония). Затем может быть и серийный БН-1200 , но решение о его строительстве пока не принято. По опыту строительства и промышленной эксплуатации реакторов на быстрых нейтронах - Россия продвинулась намного дальше всех, и продолжает активное развитие.

Небольшие действующие исследовательские быстрые реакторы - есть еще в Японии (Jōyō), Индии (FBTR) и Китае (China Experimental Fast Reactor).

Японский Monju reactor - самый несчастливый реактор в мире. В 1995-м году его построили, и в том же году - произошла утечка нескольких сотен килограмм натрия, компания пыталась скрыть масштабы происшествия (привет Фукусима), реактор был остановлен на 15 лет. В мае 2010-го реактор наконец запустили на сниженной мощности, однако в августе во время перегрузки топлива в реактор уронили 3.3-тонный кран, который сразу утонул в жидком натрии. Достать кран удалось лишь в июне 2011-го. 29-го мая 2013-го года будет приниматься решение о том, чтобы закрыть реактор навсегда.

Traveling wave reactor : Из известных нереализованных проектов - «реактор на бегущей волне» - traveling wave reactor, компании TerraPower. Этот проект продвигал Билл Гейтс - так что об этом дважды писали на Хабре: , . Идея была в том, что «ядро» реактора состояло из обогащенного урана, а вокруг него - кассеты с U-238/торием, в которых бы нарабатывалось будущее топливо. Затем, робот придвигал бы эти кассеты ближе к центру - и реакция продолжалась бы. Но в реальности - без химической переработки все это заставить работать весьма непросто, и проект так и не взлетел.

О безопасности ядерной энергетики

Как я могу говорить о том, что человечество может положиться на ядерную энергетику - и это-то после Фукусимы?

Дело в том, что любая энергетика опасна. Вспомним аварию на дамбе Баньцяо в Китае, построенную в том числе и в целях генерации электричества - тогда погибли от 26тыс. до 171тыс. человек. Авария на Саяно-Шушенской ГЭС - погибло 75 человек. В одном Китае при добыче угля ежегодно погибают 6000 шахтеров, и это не считая последствий для здоровья от вдыхания выхлопов ТЭЦ.

Количество же аварий на АЭС - не зависит от количества энергоблоков, т.к. каждая авария может произойти только один раз в серии. После каждого инцидента - причины анализируются, и устраняются на всех блоках. Так, после чернобыльской аварии - были доработаны все блоки, а после Фукусимы - у японцев отобрали ядерную энергетику вообще (впрочем, тут есть и конспирологические мотивы - у США и союзников предвидится дефицит урана-235 в ближайшие 5-10 лет).

Проблему с отработанным топливом - напрямую решают реакторы на быстрых нейтронах, т.к. помимо совершенствования технологии переработки отходов, самих отходов образуется меньше: тяжелые (актиниды), долгоживущие продукты реакции также «выжигаются» быстрыми нейтронами.

Заключение

Быстрые реакторы - обладают основным преимуществом, которого все ждут от термоядерных - топлива для них человечеству хватит на тысячи и десятки тысяч лет. Его даже добывать не нужно - оно уже добыто, и лежит на

Атомной энергетике всегда уделялось повышенное внимание из-за ее перспективности. В мире около двадцати процентов электроэнергии получают при помощи атомных реакторов, а в развитых странах этот показатель продукта атомной энергетики еще выше – больше трети от всего электричества. Однако, основным видом реакторов остаются тепловые, типа LWR и ВВЭР. Ученые считают, что одной из основных проблем этих реакторов в ближайшее время будет нехватка природного топлива, урана, его изотопа 238, необходимого для проведения цепной реакции деления. Исходя из возможного истощения ресурсов этого естественного материала топлива для тепловых реакторов, на развитие атомной энергетики накладываются ограничения. Более перспективным считается применение ядерных реакторов с использованием быстрых нейтронов, при котором возможно воспроизводство топлива.

История разработки

Исходя из программы Министерства атомной промышленности РФ в начале века были поставлены задачи по созданию и обеспечению безопасной работы ядерных комплексов энергетики, модернизированных АЭС нового типа. Одним из таких объектов стала Белоярская атомная электростанция, расположенная в 50-и километрах под Свердловском (Екатеринбург) Решение о ее создании принято в 1957 году, а в 1964 – запущен в работу первый блок.

В двух ее блоках работали тепловые ядерные реакторы, которые к 80-90 годам прошлого века исчерпали свой ресурс. На третьем блоке впервые в мире был апробирован реактор на быстрых нейтронах БН-600. За время его работы были получены планируемые разработчиками результаты. На высоте оказалась и безопасность процесса. В течение проектного срока, а он закончился в 2010 году, не произошло никаких серьезных нарушений и отклонений. Окончательный срок его работы истекает к 2025 году. Уже сейчас можно сказать, что ядерные реакторы на быстрых нейтронах, к которым относятся БН-600 и его преемник, БН-800, имеют большое будущее.

Запуск нового БН-800

Ученые ОКБМ им. Африкантова из Горького (нынешний Нижний Новгород) подготовили проект четвертого энергоблока Белоярской АЭС еще в 1983 году. В связи с аварией, произошедшей в Чернобыле в 1987 и введения новых нормативов безопасности в 1993 работы были прекращены и запуск отложен на неопределенное время. Только в 1997 году после получения лицензии на возведение блока №4 с реактором БН-800 мощностью 880 МВт от Госатомнадзора процесс возобновился.

25-го декабря 2013 началось разогревание реактора для дальнейшего вхождения теплоносителя. В июне четырнадцатого, как и намечалось по плану, произошел выход на массу, достаточную для проведения минимальной цепной реакции. Дальше дело застопорилось. МОКС-топливо, состоящее из делящихся оксидов урана и плутония, аналогичное тому, что применялось в энергоблоке №3, и не было готово. Именно его хотели использовать разработчики в новом реакторе. Пришлось комбинировать, искать новые варианты. В результате, чтобы не переносить запуск энергоблока, решили применять в части сборки урановое топливо. Запуск ядерного реактора БН-800 и блока №4 состоялся 10 декабря 2015.

Описание процесса

Во время работы в реакторе с быстрыми нейтронами происходит образование, вследствие реакции деления, вторичных элементов, которые при процессе поглощения урановой массой образуют вновь созданный ядерный материал плутоний-239, способный продолжать процесс дальнейшего деления. Главным достоинством этой реакции является получение нейтронов плутония, который применяется в качестве топлива для ядерных реакторов АЭС. Его наличие позволяет сократить добычу урана, запасы которого ограничены. Из килограмма урана-235 можно получить чуть более килограмма плутония-239, обеспечивая тем самым воспроизводство топлива.

В результате производство энергии в атомных энергоблоках при наименьших расходах дефицитного урана и отсутствия ограничений на производство возрастет в сотни раз. Подсчитано, что в этом случае урановых запасов хватит человечеству на несколько десятков веков. Оптимальным вариантом в атомной энергетике для сохранения баланса по минимальному расходу урана будет соотношение 4 к 1, где на четыре тепловых реактора будет использоваться один, работающий на быстрых нейтронах.

Цели БН-800

Во время срока эксплуатации в энергоблоке №4 Белоярской АЭС перед ядерным реактором были поставлены определенные задачи. Реактор БН-800 должен работать на MOX топливе. Небольшая заминка, произошедшая в начале работы, планы создателей не поменяла. По словам директора Белоярской АЭС г-н Сидорова переход в полном объеме на MOX топливо будет осуществлен в 2019 году. Если это осуществится, то местный ядерный реактор на быстрых нейтронах станет первым мире, полностью работающим с таким топливом. Он должен стать прототипом будущих подобных быстрых реакторов с жидкометаллическим теплоносителем, более производительных и безопасных. Исходя из этого на БН-800 проходит апробирование инновационного оборудования в рабочих условиях, проверка правильности применения новых технологий, влияющих на надежность, экономичность работы энергоблока.

class="eliadunit">

Проверка работы новой системы топливного цикла.

Испытания по выжиганию радиоактивных отходов с длительным сроком жизни.

Утилизация, накопленного в больших количествах, оружейного плутония.

БН-800, так же, как и его предшественник, БН-600, должны стать отправной точкой для накопления бесценного опыта создания и эксплуатации быстрых реакторов российским разработчикам.

Преимущества реактора на быстрых нейтронах

Применение в атомной энергетике БН-800 и ему подобных ядерных реакторов позволяет

Существенно увеличить срок по запасам урановых ресурсов, что значительно увеличивает полученный объем энергии.

Возможность сокращать срок жизни радиоактивных продуктов деления до минимального (от несколько тысяч лет до трехсот).

Повысить безопасность АЭС. Применение реактора на быстрых нейтронах позволяет нивелировать до минимального уровня возможность расплавления активной зоны, позволяет существенно повысить уровень самозащиты объекта, исключить выделения плутония при переработке. Реакторы такого типа с натриевым теплоносителем обладают повышенным уровнем безопасности.

17 августа 2016 года энергоблок №4 Белоярской АЭС вышел на режим работы мощности 100%. В объединенную систему «Урал» с декабря прошлого года поступает энергия, выработанная на быстром реакторе.

class="eliadunit">

Уникальный российский реактор на быстрых нейтронах, работающий на Белоярской АЭС, вывели на мощность 880 мегаватт — об этом сообщает пресс-служба Росатома.

Реактор работает на энергоблоке № 4 Белоярской АЭС и сейчас проходят плановые испытания генерирующего оборудования. В соответствии с программой испытаний энергоблок обеспечивает в течение 8 часов поддержание электрической мощности на уровне не ниже 880 мегаватт.

Мощность реактора поднимается поэтапно, для того что бы в итоге по результатам испытаний получить аттестацию на проектном уровне мощности в 885 мегаватт. На данный момент реактор аттестован на мощность 874 мегаватта.

Напомним, что на Белоярской АЭС работает два реактора на быстрых нейтронах. С 1980 года здесь работает реактор БН-600 — долгое время он был единственным в мире реактором этого типа. Но в 2015 году начался поэтапный запуск второго реактора БН-800.

Почему это так важно и считается историческим событием для мировой атомной отрасли?

Реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии - от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, - объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. - Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, - оно лишь чуть выше атмосферного».

По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы - как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».

«Проблемы действительно были одни и те же, - добавляет директор Белоярской АЭС Николай Ошканов, - но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,- открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями

370 топливных сборок образуют три зоны с различным обогащением по урану-235 - 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).

Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) - трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.

В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней - головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.

Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» - фотонейтронный источник (гамма-излучатель плюс бериллий).

Энергоблоки с реакторами на быстрых нейтронах могут существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счет организации замкнутого ядерно-топливного цикла. Подобными технологиями обладают лишь некоторые страны, и РФ, по признанию экспертов, является мировым лидером в этой области.

Реактор БН-800 (от «быстрый натриевый», электрической мощностью 880 мегаватт) — опытно-промышленный реактор на быстрых нейтронах с жидкометаллическим теплоносителем, натрием. Он должен стать прототипом коммерческих, более мощных энергоблоков с реакторами БН-1200.

источники

Loading...Loading...