Трехфазный двухобмоточный трансформатор принцип работы. Что такое трансформатор – это устройство, способное изменять напряжение переменного тока. Принцип действия и режимы работы

Во время эксплуатации электросистем часто возникает необходимость преобразовать определенные электрические величины с заданной пропорциональностью. Это делается для того, чтобы смоделировать определенные процессы в установках, а также провести измерения. Изобретение трансформаторов позволило решать широкий спектр задач относительно передачи электроэнергии на длительное расстояние, а также защиты оборудования. Простота и надежность такого оборудования определили его широкое распространение.

Современный рынок электроустановок предлагает огромное разнообразие трансформаторов различной мощности и назначения. Существует очень много фирм «ссылка 2», которые занимаются реализацией и обслуживанием данного оборудования, а также способны помочь с выбором. Далее попробуем разобраться, как работает трансформатор напряжения и для чего он нужен.

Назначение трансформатора

Главной задачей данного устройства является изменение значения напряжения. По степени преобразования напряжения выделяют следующие виды трансформаторов:

  • повышающие (коэффициент преобразования больше 1);
  • понижающие (меньше 1);

Повышающие трансформаторы способны значительно повышать напряжение (до 1150 кВ), таким образом уменьшая потери в линии электропередач (ЛЭП). Это свойство облегчает транспортировку электроэнергии.

Непосредственно перед потребителями электричества устанавливаются понижающие ТР. Их функция состоит в том, чтобы понизить напряжение до приемлемых значений (380 В и меньше). Кроме того, широко распространено применение таких трансформаторов в бытовой технике — в телевизорах, компьютерах, магнитофонах, зарядных устройствах. Они используются для питания электрических схем и плат, которые не рассчитаны на напряжение 220 В.

Классификация трансформаторов

По назначению ТР бывают:

  • ТР напряжения;
  • ТР тока;
  • защитные;
  • промежуточные;
  • лабораторные.

По конструкции выделяют сухие (охлаждение за счет воздуха) и масляные (магнитопровод и обмотки находятся в резервуаре с маслом) трансформаторы.

По количеству обмоток ТР бывают:

  • двухобмоточные (первичная и вторичная);
  • трехобмоточные (одна первичная и две вторичные или наоборот);
  • многофазные (несколько первичных и вторичных обмоток).

Назначение, устройство, принцип работы трансформатора напряжения

Устройство ТР напряжения включает сердечник и несколько обмоток. Сердечник трансформатора изготавливают штампованием отдельных стальных пластин. Это делается для уменьшения значения вихревых токов, которые наводятся переменным магнитным полем. Обмотки представляют собой изолированную медную проволоку, которая обматывается вокруг сердечника. К одной из обмоток подключается электростанция (первичная), а к другой — ЛЭП или потребители (вторичная). Подобное устройство трансформаторов напряжения позволяет достичь максимальной эффективности. Большой каталог силовых трансформаторов приведен на сайте http://lipetsk.vsetmg.ru/ .

Принцип работы трансформатора напряжения описывается явлением электромагнитной индукции. Когда по первичной обмотке проходит переменный ток, он образовывает переменный магнитный поток. Этот поток проходит сквозь сердечник (магнитопровод) и обе обмотки, в которых наводится ЭДС. В случае, когда вторичная обмотка имеет нагрузку, то в цепи под действием ЭДС начинает протекать ток. Отношение значений ЭДС будет равно отношению числа витков обмоток. То есть, подбирая определенное количество витков, можно получать нужное напряжение на выходе.

Стоит отметить, что подобный эффект невозможен при подключении к обмотке трансформатора постоянного тока. Все из-за того, что постоянным током создается постоянный магнитный поток, который не наводит ЭДС. Следовательно, энергия между обмотками не передается.

Трансформаторы тока, назначение и принцип действия

По своей сути трансформатор тока (ТТ) есть измерительным аппаратом. Главное назначение данного устройства — понижать значение тока до приемлемых для амперметра значений.

Конструктивно ТТ сходен с трансформатором напряжения. Он так же имеет стальной сердечник и пару обмоток. В таком устройстве первичная обмотка имеет мало витков, но большого сечения. К ней подключается цепь, в которой нужно провести измерение. Ко вторичной (содержит большее число витков) подключают амперметр. Благодаря большему количеству витков, ток во вторичной обмотке существенно ниже, чем в первичной, именно поэтому становится возможным подключение измерительного прибора.

Поскольку сопротивление амперметра очень мало, то такой трансформатор находится в состоянии короткого замыкания. Для ТТ это является рабочим режимом, в отличии от ТР напряжения.

Виды трансформаторов тока

  • сухие (обмотки имеют физическую связь, поэтому на ток во вторичной обмотке непосредственно влияет коэффициент трансформации);
  • тороидальные (первичная обмотка отсутствует, вместо нее шина или кабель);
  • высоковольтные.

Следует отметить, что эксплуатироваться трансформатор тока должен только с подключенным амперметром или с закороченной вторичной обмоткой. В противном случае на вторичной обмотке возникает высокое напряжение, способное убить.

Трансформатор (преобразовывать, трансформировать ) представляет собой электромагнитное устройство статического типа, содержащее две или более обмотки, связанные индуктивно. С помощью метода электромагнитной индукции преобразует переменный ток в постоянный. Состоит из проволочных изолированных или ленточных катушек (обмоток), подвергающихся воздействию магнитного общего потока , намотанных на сердечник из ферромагнитного мягкого материала.

Немного об этапах развития

При производстве трансформаторов используют свойства материалов: металлические, магнитные, неметаллические. Для производства современного оборудования применили свои знания и открытия многие исследователи прошлых лет. А. Г. Столетов выявил петлю гистерезиса и особенную структуру ферромагнитного сплава. Теорию электромагнитных цепей разработали Братья Гопкинсоны.

Электромагнитная индукция открыта М. Фарадеем, это явление заложено в основу действия трансформатора. Схема первого трансформатора впервые появилась в работах Генри и Фарадея в 1831 году. Но ученые тогда еще не рассматривали прибор в качестве преобразователя переменного тока.

Француз-механик в 1848 году запатентовал индукционную катушку, которая стала прообразом трансформатора. В 1876 году впервые изобрел трансформатор Яблочков П. Н . , прибор представлял собой стержень с несколькими обмотками. Трансформаторы, имеющие замкнутые сердечники, были сконструированы братьями Гопкинсами в 1884 году.

С применением масляного охлаждения прибор стал выполнять свои функции более надежно. Устройство помещалось в сосуды из керамики с маслом, это вело к повышению надежности обмоток. Русский изобретатель механик Доливо-Добровольский М. О. сконструировал первый трехфазный двигатель асинхронного типа, трехфазную систему переменного тока и впервые сделал трёхфазный трансформатор с мощностью 230 КВт, работающий от напряжения 5 В.

Силовые трансформаторы начали выпускать в 1928 году с открытием Московского завода трансформаторов. В начале 1900 годов английский металлург сделал первую тонну трансформаторной стали для производства сердечников. А в начале 30-х годов XX века отмечено появление магнитного насыщения на 50%, уменьшение потерь на гистерезис в 4 раза, возрастание магнитной проницаемости в 5 раз при комбинированном применении нагревания и прокатки.

Виды трансформаторов

Автотрансформатор

Это вариант трансформатора, принцип работы которого заключается в соединении вторичной и первичной обмотки напрямую, в обмотках прослеживается электрическая и электромагнитная связь. Для подключения и получения различного напряжения в обмотке предусмотрено несколько выводов. Этот вид приборов работает с высоким коэффициентом полезного действия, так как преобразовывается только некоторая часть мощности, что важно при небольшой разнице входного и выходного напряжения.

К отрицательным характеристикам относится отсутствие гальванической развязки (изолирующего слоя) между вторичной и первичной цепью. Используют автотрансформаторы на месте обычных агрегатов для соединения заземленных контуров с показателями напряжения от 110 КВт, при этом коэффициент трансформации не должен превышать показание 3−4.

Положительным является низкая стоимость из-за меньшего веса сердечнниковой стали, медных проводов, отсюда маленькая масса прибора и небольшие габариты.

Силовой

Обычный стандартный прибор для преобразования электричества в сетях и устройствах, принимающих и использующих электрическую энергию.

Принцип работы и устройство трансформатора заключается в подаче питания от источника электричества. Наиболее актуальным является использование для снижения первичных показателей тока до величины, применяемой в измерительных и защитных цепях, сигнализации и управления. Во вторичной обмотке отмечаются показатели тока 5 А или 1 А. Измерительные устройства подключаются к вторичной обмотке, а к первичной подключается цепь, в которой измеряют ток. Для расчета тока во второй обмотке используют показания в первичной обмотке и делят на коэффициент трансформации.

Это прибор для преобразования больших показателей напряжения в низкие значения в стандартных цепях, измерительных линиях, и контурах РЗиА. Устройство питается от источника электрического напряжения, изолирует логические защитные контуры и измерительные цепи от цепи с высокими показателями напряжения.

Импульсного действия

Прибор используется для преобразования сигналов импульса с минимальным искажением формы и длительностью до десятков микросекунд. В основном применяется для передачи импульса прямоугольного типа (наиболее крутой срез и фронт, примерно постоянное колебание амплитуды). Служит для преобразования коротких видеоимпульсов, постоянно повторяющихся, основной задачей является передача трансформируемых импульсов в первоначальном и неискаженном виде. На выходе обмоток требуется получить ту же форму импульса напряжения, но иногда меняется полярность или амплитуда.

Разделительный тип

У этого прибора первичная и вторичная обмотки никак не связаны. Трансформатор используется для увеличения безопасного подключения к электрическим сетям, для случаев одновременного прикасания к токоведущим деталям и земле. Защищает от одновременного прикасания к деталям, которые не находятся под действием тока, но могут под ним оказаться в результате нарушения изоляции. Агрегаты призваны обеспечить гальваническую развязку (изоляцию) электрических цепей.

Пик-трансформатор

Служит для преобразования синусоидального тока в импульсное напряжение с полярностью, меняющейся через каждые полпериода.

Сдвоенный дроссель

Индуктивный встречный фильтр или сдвоенный дроссель представляет собой тип устройства с использованием двух обмоток. Из-за взаимной катушечной индукции он действует эффективнее, чем одинарный дроссель. Используется в качестве входного фильтровального приспособления перед блоками питания, в сигнальных дифференциальных цифровых контурах и в технике со звуком.

Броневой трехфазный

Выпускают две различных базовых конструкции:

  • стержневую;
  • броневую.

Обе конструкции не изменяют эксплуатационные качества и надежность прибора, но при изготовлении имеются существенные различия:

  • стержневой тип включает сердечник и обмотки, при взгляде на конструкцию сердечник скрыт за обмотками, видно только нижнее и верхнее ярмо, ось обмоток имеет вертикальное расположение;
  • броневой вид прибора включает сердечник в виде обмоток, при этом видно, что сердечник скрывает за собой часть обмоток трансформатора, ось обмоток может располагаться в вертикальном или горизонтальном положении.

Основные составляющие

В их качестве вступают:

  • магнитная система (сердечник, магнитопровод);
  • обмотки;
  • охладительная система.

Магнитная система

Состоит из элементов в комплекте, чаще всего применяются пластины из ферромагнитного материала или электротехнических сталей, которые компонуются в определенной геометрической форме. Ее выбор определяется локализацией в ней основного трансформаторного магнитного поля. Система магнитного воздействия одновременно со всеми узлами, элементами и деталями для соединения частей в общую конструкцию, носит название остова трансформатора.

Часть магнитной системы, включающая основные обмотки, называется стержнем. Другая часть магнитного комплекта, на которой нет рабочих обмоток, и она служит для соединения магнитной цепи, имеет наименование ярмо. В зависимости от того, как расположены стержни, подразделяют:

  • плоская система, где продольные стержни и ярма расположены в одной плоскости;
  • пространственная система включает разно плоскостное расположение сердечников и ярм;
  • симметричная система отличается одинаковой формой и длиной стержней, а их расположение по отношению к ярмам является стандартным для всех элементов;
  • несимметричная система, в ней все стержни различаются по форме и размеру, а их расположение не отличается симметрией и отлично от других элементов.

Обмотки

Основным конструктивным элементом обмотки служит виток, являющийся рядом параллельных соединенных проводников (в многопроволочном варианте жилы), один раз охватывающий часть магнитного сердечника. Ток витка совместно с током других витков, проводников и частей трансформатора продуцирует магнитное трансформаторно поле, в котором наводится под действием магнитного поля сила, движущая ток.

Обмоткой называется общее число витков, образующих электрический контур для суммирования ЭДС в витках. Трехфазный трансформатор имеет в конструкции комплект обмоток из трех рабочих фаз. Проводник обычно квадратного сечения, чтобы увеличить площадь его делят на два или несколько проводящих стержня. Этот прием помогает снизить вихревые токи и облегчить работу обмотки. Квадратный проводник называется жилой. В качестве обмотки используется транспонированный кабель.

Изоляцию делают бумажной обмоткой или лаком на эмалевой основе. Две параллельные жилы могут выполняться в единой изоляции, такой комплект называется кабелем. Чтобы понять, как работает трансформатор, нужно знать разделение обмоток по типам. В зависимости от назначения обмотки бывают:

  • основные, те, что принимают преобразованную энергию или отводят переменный ток;
  • регулирующие предусмотрены для нормализации коэффициента напряжения при небольших показаниях тока в обмотках;
  • вспомогательные предназначены для электрического снабжения собственных нужд меньшей мощности, чем номинальная трансформаторная мощность, подмагничивания магнитной системы током постоянного значения.

В зависимости от варианта исполнения обмотки делят:

  • рядовые - витки делаются по всей длине в направлении оси, последующие витки наматывают плотно, без пробелов;
  • винтовые - имеют многослойное наложение, предусмотрены расстояния между витками или заходами обмотки;
  • дисковые обмотки содержат последовательно соединенные диски, при этом в центр каждого наматывается обмотка в форме спирали;
  • фольговый вид обмотки выполнен из листа алюминия или меди, разной толщины.

Бак для охлаждения

Представляет собой масляный резервуар, обеспечивает защиту активного ингредиента, служит опорой для приборов управления и вспомогательных приборов. Перед добавлением масла в баке выкачивают воздух для безопасной диэлектрической прочности изоляции. При изготовлении звуковые частоты от сердечника трансформатора и от элементов бака должны совпадать.

Конструкция предусматривает дополнительные параметры для расширения масла в условиях нагревания, иногда это дополнительный расширительный бак. Если увеличивается номинальная мощность трансформатора, то токи внутри и снаружи ведут к перегреву конструкции. Аналогично действует магнитный рассеянный поток внутри бака. Чтобы снизить отрицательное воздействие делают вставки из немагнитных материалов, окружая ими проходные сильноточные изоляторы.

Применение трансформаторов

Так как потери для нагревания провода пропорциональны силе тока в квадрате, идущему по этому проводу, то при передаче электричества на длинные расстояния следует применять высокое напряжение при низкой силе тока. Из-за обеспечения безопасности в бытовых условиях не применяют слишком высокое напряжение. Для регулировки напряжения в сети используют трансформаторы, которые повышают напряжение перед передачей по высоковольтным линиям, затем снижение показателей перед потребительским применением.

Для питания различных узлов приема электроэнергии требуются разнообразные показатели напряжения (в телевизоре, компьютере). В прошлых периодах трансформатор был тяжелым и громоздким, но с увеличением частоты переменного тока размеры прибора можно уменьшить. Поэтому в современных устройствах сначала выпрямляют электрический ток, затем его преобразуют в импульсы с высокой частотой. Последние токи идут на импульсный трансформатор для трансформации в нужное напряжение.

Назначение и виды трансформатора.

Трансформатор представляет собой статическое электромагнитное оборудование, при работе которого происходит преобразование переменного тока с трансформацией напряжения. Т.е. этот аппарат позволяет его понижать или повышать. Установленные на электростанциях трансформаторы осуществляют на длительные расстояния при высоких напряжениях до 1150кВ. А уже непосредственно в местах потребления происходит понижение напряжения, в пределах 127-660В. При таких значениях обычно работают различные электрические потребители, которые устанавливаются на заводах, фабриках и в жилых домах. Электроизмерительные приборы, электросварка и другие элементы в цепи высокого напряжения также требуют использования трансформатора. Они бывают одно- и трехфазные, двух- и многообмоточные.

Существует несколько видов трансформаторов, каждый из которых определен своими функциями и предназначением. Силовой трансформатор преобразует электрическую энергию в сетях, которые предназначены для использования и приема этой энергии. служит измерением больших токов в устройствах электрических систем. Трансформатор напряжения преобразует высокое напряжение в низкое. Автотрансформатор имеет электрическую и электромагнитную связь, за счет прямого соединения первичной и вторичной обмотки. Импульсный трансформатор преобразует импульсные сигналы. отличается тем, что первичная и вторичная обмотки не связаны друг с другом электрически. Вкратце говоря, во всех видах принцип работы трансформатора чем-то схож. Еще можно выделить гидротрансформатор, принцип работы которого заключается в передаче крутящего момента к коробке передач от двигателя автомобиля. Это устройство позволяет бесступенчато изменять частоту вращения и крутящий момент.

Устройство и принцип действия трансформатора.

Принцип работы трансформатора заключается в проявлении электромагнитной индукции. Это устройство состоит из магнитопровода и двух обмоток, которые расположены на нем. К одной подается электроэнергия, а ко второй подключаются потребители. Как уже указывалось выше, эти обмотки называются первичной и вторичной, соответственно. Магнитопровод выполнен из электротехнической элементы которого изолированы лаком. Его часть, на которой располагаются обмотки, называется стержнем. И именно такая конструкция получила большее распространение, т.к. обладает рядом достоинств - простая изоляция обмоток, простота ремонта, хорошие условия охлаждения. Как видно, принцип работы трансформатора не так уж и сложен.

Существуют еще трансформаторы броневой конструкции, которая значительно уменьшает их габариты. Чаще всего это бывают однофазные трансформаторы. В таком оборудовании боковые ярма играют защитную роль обмотки от механических повреждений. Это очень важный фактор, т.к. малогабаритные трансформаторы не имеют кожуха и находятся с остальным оборудованием в общем месте. чаще всего выполняют с тремя стержнями. Бронестержневая конструкция применяется также в трансформаторах большой мощности. Хоть это и увеличивает расходы электроэнергии, но зато позволяет уменьшать высоту магнитопровода.

Различают трансформаторы по способу соединения стержней: стыковые и шихтованные. В стыковых стержни и ярма собираются раздельно и соединяются крепежными частями. А в шихтованных листы собираются внахлест. Шихтованные трансформаторы получили большее применение, т.к. у них намного выше механическая прочность.

Принцип работы трансформатора также зависит от обмотки, которые бывают цилиндрическими, дисковыми и концентрическими. Оборудование большой и средней мощности имеют газовое реле.

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.

Трансформаторы напряжения назначение и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n<1), например, применяется в ламповых усилителях;
  3. согласующий – трансформатор параметры напряжения не изменяет, происходит только гальваническая развязка цепей (n~1), например, применяется в звуковых усилителях.

В основе работы трансформатора лежит принцип электромагнитной индукции и для наиболее полной передачи энергии, для уменьшения потерь при трансформации, устройство обычно выполняется на магнитопроводе.

Как правило, первичная катушка одна, а вот вторичных может быть несколько, все зависит от назначения трансформатора.

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n». Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести . Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Добавить сайт в закладки

Как действует трансформатор?

Трансформатор - это статический (т. е. без движущихся ча­стей) электромагнитный аппарат однофазный или трехфазный, в котором явление взаимоиндукции используется для преобразо­вания электрической энергии. Трансформатор преобразует пере­менный ток одного напряжения в переменный ток той же частоты, но другого напряжения.

Трансформатор имеет несколько электрических, изолированных одна от другой обмоток: однофазный - не менее двух, трехфазный - не менее шести.

Обмотки, соединенные с источником электроэнер­гии, именуются первичными; остальные обмотки, отдающие энергию во внешние цепи, называются вторичными. На рисунке внизу схематически показаны первичная и вторичная обмотки од­нофазного трансформатора; они снабжены общим замкнутым сердечником, собранным из листовой электротехнической стали.

Ферромагнитный сердечник служит для усиления магнитной связи между обмотками, т. е. для того, чтобы большая часть магнитного потока первичной обмотки сцеплялась с витками вторичной обмотки.На рис. справа показан сердечник и шесть обмоток трехфазного трансформатора. Эти обмотки соединяются по схеме звезды или треугольника.

Для улучшения условий охлаждения и изоляции трансформа­тор помещается в бак, заполненный минеральным маслом (про­дуктом перегонки нефти). Это так называемый масляный трансформатор.

При частоте переменного тока примерно свыше 20 кГц приме­нение стального сердечника в трансформаторах нецелесообразно из-за больших потерь в стали от гистерезиса и вихревых токов.

Для высоких частот применяются трансформаторы без фер­ромагнитных сердечников - воздушные трансформа­торы.

Если напряжение на зажимах первичной обмотки, первич­ное напряжение U1, меньше вторичного напряжения U 2, то транс­форматор называется повышающим. Если же первичное на­пряжение больше вторичного, то - понижающим (U1>U2). В соответствии с относительной величиной номинального напря­жения принято различать обмотку высшего на­пряжения (ВН) и обмотку низшего напряжения (НН).

Познакомимся кратко с работой однофазного двухобмоточного трансфор­матора со стальным сердеч­ником. Его рабочий процесс и электрические соотноше­ния можно считать харак­терными в основном для всех видов трансформато­ров.

Напряжение U1, приложенное к зажи­мам первичной обмотки, создает в этой обмотке пе­ременный ток i1.Ток воз­буждает в сердечнике транс­форматора переменный маг­нитный поток Ф. Вследствие периодического изменения этого потока в обеих обмотках трансформатора индуктируются ЭДС.

е1= - w1 (?ф: ?t) и e2= - w2 (?ф:?t), где

w1 и w2 - количество витков той и другой обмоток.

Таким образом, отношение ЭДЕ, индуктируемых в обмотках, равно отношению чисел витков этих обмоток:

е1: e2 = w1: w2

Это коэффициент трансформации трансформатора.

Коэффициент полезного действия трансформатора относи­тельно очень высок, в среднем порядка 98%, что позволяет при номинальной нагрузке считать приближенно одинаковыми первичную мощность, получаемую трансформатором, и вторичную мощность, им отдаваемую, т. е. p1 ? p2 или u1i1 ? u2i2, на основании чего

i1: i2? u2: u1? w 2: w 1

Это отношение мгновенных значений токов и напряжений справедливо и для амплитуд, и для действующих значений:

L1: l2? w 2: w 1?u2: u1,

т. е. отношение токов в обмотках трансформатора (при нагрузке, близкой к номинальной) можно считать обратным отношению напряжений и числу витков соответствующих обмоток. Чем меньше нагрузка, тем больше влияет ток холостого хода, и приведенное приближенное соотношение токов нарушается.

При работе трансформатора совершенно различна роль ЭДС в его первичной и вторичной обмотках. ЭДС, ей индуктируемая в первичной обмотке, возникает как противодействие цепи изменению в ней тока i1. По фазе эта ЭДС почти противоположна напряжению.

Как в цепи, содержащей индуктивность, ток в первичной о б м о тке трансформатора

i1=(u1 + e1) : r1,

где г 1 - активное сопротивление первичной обмотки.

Отсюда получаем уравнение для мгновенного значения первичного напряжения:

u1 = -e1 + i1r1 = w t(?ф: ?t) + i1r1,

которое можно прочитать как условие электрического равновесия: приложенное к зажимам первичной обмотки напряжение u1 всегда уравновешивается ЭДС и падением напряжения в активном сопротивлении обмотки (второй член относительно весьма мал).

Иные условия имеют место во вторичной цепи. Здесь ток i2 создается ЭДС e1, играющей роль ЭДС источника тока, и при активной нагрузке r/н во вторичной цепи этот ток

i2= l2: (r2 +r/н),

где r2- активное сопротивление вторичной обмотки.

В первом приближении воздействие вторичного тока i2 на первичную цепь трансформатора можно описать следующим образом.

Ток i2, проходя по вторичной обмотке, стремится создать в сердечнике трансформатора магнитный поток, определяемый намагничивающей силой (НС) i2w2. Согласно принципу Ленца, этот поток должен иметь направление, обратное направлению главного потока. Иначе можно сказать, что вторичный ток стре­мится ослабить индуктирующий его магнитный поток. Однако такое уменьшение главного магнитного потока Ф т нарушило бы электрическое равновесие:

u 1 = (-е 1) + i1r1,

так как e1 пропорционально магнитному потоку.

Создается пре­обладание первичного напряжения U1, поэтому одновременно с появлением вторичного тока увеличивается первичный ток, при­том настолько, чтобы компенсировать размагничивающее дей­ствие вторичного тока и, таким образом, сохранить электрическое равновесие. Следовательно, всякое изменение вторичного тока должно вызвать соответствующее изменение первичного тока, при этом ток вторичной обмотки, благодаря относительно малому значению составляющей i1r1, почти не влияет на амплитуду и характер изменений во времени главного магнитно­го потока трансформатора. Поэтому амплитуду этого по­тока Ф т можно считать практически постоянной. Такое постоян­ство Фт характерно для режима трансформатора, у которого поддерживается неизменным напряжение U1, приложенное к зажимам первичной обмотки.

Loading...Loading...