Защита металла и бетона от коррозии. Коррозия бетона — Защита бетона от коррозии. Что приводит к ржавлению арматурного каркаса

С течением времени практически каждый строительный материал приходит в негодность и разрушается. Это касается многих материалов, применяемых в строительстве: металлов различных типов, кирпича и газобетона, пенобетона, асбоцемента и железобетона. Не является исключением в этом ряду и бетон. В связи со своей структурой, основная часть которой – это цемент, состоящий из кальциевых и кремниевых кислот с вкраплениями алюминия, основным разрушителем, вызывающим процесс коррозии бетона, является обыкновенная вода. Сегодня, защита продумана до мелочей, существуют различные способы защиты как физические (покрытие стойкими материалами), так и химические (различные пропитки и лаки).

На скорость коррозии непосредственное влияние оказывает цемент, который использовался при строительстве.

Но, насколько бы современной и совершенной ни была защита, она недолговечна, и, время от времени придется затрачивать усилия на ее обновление.

Наиболее подвержены коррозии цементные швы. Это связано с тем, что они – наименее прочное звено в конструкции.

Современная наука дает определения множеству явлений, согласно ей, коррозия – это совокупность процессов (химических, биологических, физических), инициатором которых является внешняя среда, а результатом – постепенное разрушение строительного материала.

Чаще всего процесс коррозии бетона начинается с такой его части как цементный камень. Эта часть конструкции является наименее прочной; образуется она уже в процессе затвердения, в ней есть множество капиллярных ходов, которые могут быть заполнены воздухом или водой. Воздействовать на цементный камень могут газы, находящиеся непосредственно в воздухе, а также разные виды вод:

  • грунтовые;
  • речные;
  • морские;
  • дренажные;
  • сточные.

Очень вредны для цементного камня грунтовые воды, особенно те, которые находятся около предприятий промышленности. В таких водах могут найтись самые разные химические вещества, к примеру, вблизи химических производств грунтовые воды «обогащены» кислотами органическими и минеральными, щелочами, хлоридами, солями никеля, цинка, меди, железа, нитратами – список можно продолжать довольно долго. У заводов, занимающихся обработкой металлов, в грунтовых водах часто можно найти сульфаты железа и другие продукты, получающиеся в результате травильных процессов.

Быстрому разрушению бетонных конструкций способствуют мелкие трещины, через которые внутрь поступает влага.

Однако грунтовые воды вблизи фабрик и заводов не являются рекордсменами по числу и концентрации веществ, способных принести вред цементному камню: выигрывают в данном случае сточные воды. Даже в небольшой концентрации (разбавленные речной водой) сточные воды могут нанести большой вред цементному камню, который может быть, например, в гидротехнических сооружениях.

Интересно, что воздух вблизи различных заводов может быть совершенно безопасным для человека (содержание вредных веществ – оксиды азота, сернистый газ и других – не представляет вреда для здоровья), а вот для бетона, даже такие небольшие концентрации, могут стать причиной постепенной коррозии и разрушения.

Виды коррозионных процессов

Есть немало видов коррозионных воздействий. Не одна сотня химических веществ при долгом контакте приводит к коррозии. Коррозия бетона бывает следующих видов:

На графике представлена зависимость скорости разрушения от времени воздействия неблагоприятных факторов.

  • химическая;
  • физико-химическая;
  • биологическая;
  • радиационная.

Химическая коррозия является следствием атмосферных осадков и воздействия углекислого газа, который всегда присутствует в составе воздуха. Сильнее всего воздействие на бетон происходит в результате таких атмосферных осадков, в которых имеются хлориды, сульфаты или карбонаты. Разрушают и осадки, в составе которых присутствуют оксиды азота – так называемые «кислотные дожди».

Все процессы, которые имеют место при химической коррозии относятся к одному из трех видов:

Любые защитные покрытия на бетонные поверхности можно наносить после того, как они просохнут.

  1. Выщелачивание с помощью мягких вод. При этом происходит вымывание таких компонентов из состава (из его поверхностного слоя), которые могут быть растворены в щелочной воде. В результате данного процесса на поверхности появляется налет белого цвета – белые потеки. От этого вида коррозии бетона в некоторых случаях он только выигрывает: выщелачивание создает коллоидный слой, который защищает бетон от других вредных воздействий окружающей среды.
  2. Растрескивание или цементная бацилла. В результате этого процесса из-за влаги, которая имеется в атмосфере, на поверхности могут возникать так называемые «рыхлые малорастворимые вещества». Из-за этих веществ, в результате образования различных обменных реакций, бетон может начать растрескиваться. Чаще всего повреждаются поверхность, но может начаться и проникновение вглубь – и с течением времени, коррозия бетона может усилиться.
  3. Растрескивание в связи с кристаллизацией. При этом типе химической коррозии образуются плохо растворимые соединения, которые с помощью растворов сульфатов кристаллизуются. Так как при кристаллизации происходит увеличение объема, то бетон вынужден расширяться, в итоге возникают трещины.

При ремонте бетонных конструкций, зону коррозии удаляют захватывая часть “здоровой”.

Физико-химическая коррозия бетона связана с процессом замерзания воды. В поры и капилляры, пусть и в небольших количествах, попадает вода (также она может быть там изначально), а затем, при понижении температуры, она замерзает, превращается в лед. Лед по объему больше, чем вода, и он начинает распирать конструкцию – происходит растрескивание. Этот процесс идет тем быстрее, чем больше и чаще происходят процессы заморозки и разморозки бетона.

Третий вид разрушения – биологический. Здесь первоначальный источник коррозии – это микроорганизмы. Строго говоря, не сами микроорганизмы разрушают структуру, а химические вещества, продукты жизнедеятельности микроорганизмов. Однако к химической коррозии этот вид не относится – причиной возникновения микроорганизмов является не атмосфера, а нарушение условий эксплуатации сооружений из бетона. Микроорганизмы начинают активно развиваться в условиях постоянной сырости, так что важно помнить об этом при пользовании зданием.

Последний, не так сильно распространенный вид коррозии бетона, – это радиационный. В этом случае из-за действующей радиации, ионизационного излучения, из бетона удаляется кристаллизованная вода. Удаление такой воды нарушает структуру и прочность материала снижается. При долгом облучении кристаллические вещества могут приобретать состояние, подобное жидкому, иначе оно называется аморфное. Как результат, все это вызывает трещины, увеличение внутренних напряжений в бетоне.

Факторы развития

Не секрет, что разрушение различных сооружений происходит в разные сроки. На коррозию влияют следующие факторы:

Если на сооружение будет длительное время воздействовать агрессивная среда, то такие сооружения покрывают гидроизоляционными смесями.

  • пористость материала;
  • капиллярность материала;
  • преобладающие компоненты в атмосферных осадках;
  • способность верхнего слоя бетона противостоять веществам.

Пористость – является одним из основных свойств бетона. Этот показатель характеризует наличие пор и плотность. Напрямую от этого свойства проистекает другое – способность к водопоглощению. Капиллярно-пористая структура позволяет бетону впитывать воду из воздуха, при осадках и в других случаях. Бетон, имеющий сильно пористую структуру и, соответственно, большое водопоглощение, имеет больше всего шансов начать разрушаться от физико-химической коррозии. Защита бетонной конструкции должна быть продумана на этапе строительства. Поэтому очень важно проведение строительных работ профессионалами, которые смогут сделать бетонную смесь нужной пористости, чтобы в дальнейшем защита бетонной конструкции от физико-химической коррозии не тревожила владельца строения.

Способы защиты

Места, где обнаружена коррозия, зачищают и покрывают специальными грунтовками. Они обеспечивают гидро- и пароизоляцию, а следовательно, замедляют разрушение.

В связи с тем, что в последнее время огромное количество зданий и сооружений возводится из бетона, большую роль стала играть защита этого материала от внешних воздействий. Чаще всего она основывается на защите поверхности бетона, на использовании бетона с минимальной капиллярной структурой и применении особых добавок, которые не дают образовываться микротрещинам, защищают от выщелачивания и вымывания. Все эти мероприятия можно отнести к одной из двух групп. В первую группу входят такие мероприятия, которые изменяют состав бетона, делают его более устойчивым.

Во вторую группу входят средства, при которых поверхность бетона покрывается различными веществами, пропитками, лаками и так далее. Иногда в состав таких веществ могут входить добавки, которые защищают бетон от образования микроорганизмов на нем. Эффективно использование цельных листов из какого-либо защитного материала. В этом случае увеличивается скорость обработки, а защита не страдает.

Нередко сочетаются оба способа: бетон покрывается специальным веществом, но оно не только находится на его поверхности, но и впитывается внутрь, проникает в его толщу. Такие средства очень эффективны, они могут обеспечивать практически полную гидроизоляцию.

При больших очагах коррозии проводится очистка здания от них. После этого здания обрабатываются антикоррозионными полимерными грунтовками, проводят армирование и заново покрывают слоем бетона.

Защита поверхности бетонных сооружений от влаги, обеспечивается за счет использования сеалантов, в составе которых имеются полимерцементные композиты. Сеаланты – это особые вещества, основной функцией которых является именно защита и повышение прочности бетонных поверхностей. Находящиеся в составе этих веществ компоненты могут буквально просачиваться на несколько сантиметров вглубь, в результате, структура поверхности бетона изменяется – получается аналог мембраны, которая может пропускать воду только в одном направлении: изнутри наружу. В итоге влажность бетона только уменьшается, а не колеблется со временем.

Коррозия железобетона

Металлические части конструкции покрывают специальными лакокрасочными защитными материалами.

Разрушению из-за влаги и химических соединений подвержены строения не только из бетона, но и из железобетона. В железобетонных конструкция дополнительно присутствует арматура из металла, которая может стать источником (причиной) коррозии электрохимического типа. Однако, несмотря на это, железобетон – более устойчивый материал, чем обыкновенный бетон. Источником его устойчивости является наличие специального слоя на поверхности; именно он защищает внутреннюю структуру. Но и здесь с течением времени атмосфера, а конкретно углекислый газ и осадки с растворами солей, разрушают этот слой. Защита железобетонной конструкции в этом случае, будет отличаться от способов защиты бетона от коррозии.

Для того чтобы минимизировать последствия электрохимической коррозии и максимально замедлить процесс разрушения, в бетон вводятся специальные вещества. Такие вещества называются ингибиторами металлической коррозии; основное их предназначение – защита материала, посредством создания защитной пленки на поверхности арматуры, важно не допустить ее контакт с бетоном, влагой и окружающим воздухом. Ингибиторы можно наносить на поверхность или добавлять в бетон в процессе производства. Подобная защита гарантирует сохранность железобетонных конструкций от появления коррозии.

Помимо этого, для защиты арматуры железобетона часто применяют и стандартные методы, которые хорошо зарекомендовали себя при использовании в обыкновенных металлических конструкциях. Например, так называемый способ протекторных анодов. При этом способе с каркасом железобетона соединяется другой метал, который в большей степени склонен к электрохимической коррозии. Защита заключается в том, что соединяясь с железобетонным каркасом, идет электрохимическая реакция, разрушению подвергается именно этот металл-болванка. Таким образом, электрохимическая коррозия железобетона начинается только после того, как эта болванка полностью разрушится.

С течением времени практически каждый строительный материал приходит в негодность и разрушается. Это касается многих материалов, применяемых в строительстве: металлов различных типов, кирпича и газобетона, пенобетона, асбоцемента и железобетона. Не является исключением в этом ряду и бетон. В связи со своей структурой, основная часть которой — это цемент, состоящий из кальциевых и кремниевых кислот с вкраплениями алюминия, основным разрушителем, вызывающим процесс коррозии бетона, является обыкновенная вода. Сегодня, защита продумана до мелочей, существуют различные способы защиты как физические (покрытие стойкими материалами), так и химические (различные пропитки и лаки).

На скорость коррозии непосредственное влияние оказывает цемент, который использовался при строительстве.

Но, насколько бы современной и совершенной ни была защита, она недолговечна, и, время от времени придется затрачивать усилия на ее обновление.

Определение коррозии

Наиболее подвержены коррозии цементные швы. Это связано с тем, что они — наименее прочное звено в конструкции.

Современная наука дает определения множеству явлений, согласно ей, коррозия — это совокупность процессов (химических, биологических, физических), инициатором которых является внешняя среда, а результатом — постепенное разрушение строительного материала.

Чаще всего процесс коррозии бетона начинается с такой его части как цементный камень. Эта часть конструкции является наименее прочной; образуется она уже в процессе затвердения, в ней есть множество капиллярных ходов, которые могут быть заполнены воздухом или водой. Воздействовать на цементный камень могут газы, находящиеся непосредственно в воздухе, а также разные виды вод:

  • грунтовые;
  • речные;
  • морские;
  • дренажные;
  • сточные.

Очень вредны для цементного камня грунтовые воды, особенно те, которые находятся около предприятий промышленности. В таких водах могут найтись самые разные химические вещества, к примеру, вблизи химических производств грунтовые воды «обогащены» кислотами органическими и минеральными, щелочами, хлоридами, солями никеля, цинка, меди, железа, нитратами — список можно продолжать довольно долго. У заводов, занимающихся обработкой металлов, в грунтовых водах часто можно найти сульфаты железа и другие продукты, получающиеся в результате травильных процессов.

Быстрому разрушению бетонных конструкций способствуют мелкие трещины, через которые внутрь поступает влага.

Однако грунтовые воды вблизи фабрик и заводов не являются рекордсменами по числу и концентрации веществ, способных принести вред цементному камню: выигрывают в данном случае сточные воды. Даже в небольшой концентрации (разбавленные речной водой) сточные воды могут нанести большой вред цементному камню, который может быть, например, в гидротехнических сооружениях.

Интересно, что воздух вблизи различных заводов может быть совершенно безопасным для человека (содержание вредных веществ — оксиды азота, сернистый газ и других — не представляет вреда для здоровья), а вот для бетона, даже такие небольшие концентрации, могут стать причиной постепенной коррозии и разрушения.

Виды коррозионных процессов

Есть немало видов коррозионных воздействий. Не одна сотня химических веществ при долгом контакте приводит к коррозии. Коррозия бетона бывает следующих видов:

На графике представлена зависимость скорости разрушения от времени воздействия неблагоприятных факторов.

  • химическая;
  • физико-химическая;
  • биологическая;
  • радиационная.

Химическая коррозия является следствием атмосферных осадков и воздействия углекислого газа, который всегда присутствует в составе воздуха. Сильнее всего воздействие на бетон происходит в результате таких атмосферных осадков, в которых имеются хлориды, сульфаты или карбонаты. Разрушают и осадки, в составе которых присутствуют оксиды азота — так называемые «кислотные дожди».

Все процессы, которые имеют место при химической коррозии относятся к одному из трех видов:

Любые защитные покрытия на бетонные поверхности можно наносить после того, как они просохнут.

  1. Выщелачивание с помощью мягких вод. При этом происходит вымывание таких компонентов из состава (из его поверхностного слоя), которые могут быть растворены в щелочной воде. В результате данного процесса на поверхности появляется налет белого цвета — белые потеки. От этого вида коррозии бетона в некоторых случаях он только выигрывает: выщелачивание создает коллоидный слой, который защищает бетон от других вредных воздействий окружающей среды.
  2. Растрескивание или цементная бацилла. В результате этого процесса из-за влаги, которая имеется в атмосфере, на поверхности могут возникать так называемые «рыхлые малорастворимые вещества». Из-за этих веществ, в результате образования различных обменных реакций, бетон может начать растрескиваться. Чаще всего повреждаются поверхность, но может начаться и проникновение вглубь — и с течением времени, коррозия бетона может усилиться.
  3. Растрескивание в связи с кристаллизацией. При этом типе химической коррозии образуются плохо растворимые соединения, которые с помощью растворов сульфатов кристаллизуются. Так как при кристаллизации происходит увеличение объема, то бетон вынужден расширяться, в итоге возникают трещины.

При ремонте бетонных конструкций, зону коррозии удаляют захватывая часть «здоровой».

Физико-химическая коррозия бетона связана с процессом замерзания воды. В поры и капилляры, пусть и в небольших количествах, попадает вода (также она может быть там изначально), а затем, при понижении температуры, она замерзает, превращается в лед. Лед по объему больше, чем вода, и он начинает распирать конструкцию — происходит растрескивание. Этот процесс идет тем быстрее, чем больше и чаще происходят процессы заморозки и разморозки бетона.

Третий вид разрушения — биологический. Здесь первоначальный источник коррозии — это микроорганизмы. Строго говоря, не сами микроорганизмы разрушают структуру, а химические вещества, продукты жизнедеятельности микроорганизмов. Однако к химической коррозии этот вид не относится — причиной возникновения микроорганизмов является не атмосфера, а нарушение условий эксплуатации сооружений из бетона. Микроорганизмы начинают активно развиваться в условиях постоянной сырости, так что важно помнить об этом при пользовании зданием.

Последний, не так сильно распространенный вид коррозии бетона, — это радиационный. В этом случае из-за действующей радиации, ионизационного излучения, из бетона удаляется кристаллизованная вода. Удаление такой воды нарушает структуру и прочность материала снижается. При долгом облучении кристаллические вещества могут приобретать состояние, подобное жидкому, иначе оно называется аморфное. Как результат, все это вызывает трещины, увеличение внутренних напряжений в бетоне.

Факторы развития

Не секрет, что разрушение различных сооружений происходит в разные сроки. На коррозию влияют следующие факторы:

Если на сооружение будет длительное время воздействовать агрессивная среда, то такие сооружения покрывают гидроизоляционными смесями.

  • пористость материала;
  • капиллярность материала;
  • преобладающие компоненты в атмосферных осадках;
  • способность верхнего слоя бетона противостоять веществам.

​Пористость — является одним из . Этот показатель характеризует наличие пор и плотность. Напрямую от этого свойства проистекает другое — способность к водопоглощению. Капиллярно-пористая структура позволяет бетону впитывать воду из воздуха, при осадках и в других случаях. Бетон, имеющий сильно пористую структуру и, соответственно, большое водопоглощение, имеет больше всего шансов начать разрушаться от физико-химической коррозии. Защита бетонной конструкции должна быть продумана на этапе строительства. Поэтому очень важно проведение строительных работ профессионалами, которые смогут сделать бетонную смесь нужной пористости, чтобы в дальнейшем защита бетонной конструкции от физико-химической коррозии не тревожила владельца строения.

Способы защиты

Места, где обнаружена коррозия, зачищают и покрывают специальными грунтовками. Они обеспечивают гидро- и пароизоляцию, а следовательно, замедляют разрушение.

В связи с тем, что в последнее время огромное количество зданий и сооружений возводится из бетона, большую роль стала играть защита этого материала от внешних воздействий. Чаще всего она основывается на защите поверхности бетона, на использовании бетона с минимальной капиллярной структурой и применении особых добавок, которые не дают образовываться микротрещинам, защищают от выщелачивания и вымывания. Все эти мероприятия можно отнести к одной из двух групп. В первую группу входят такие мероприятия, которые изменяют состав бетона, делают его более устойчивым.

Во вторую группу входят средства, при которых поверхность бетона покрывается различными веществами, пропитками, лаками и так далее. Иногда в состав таких веществ могут входить добавки, которые защищают бетон от образования микроорганизмов на нем. Эффективно использование цельных листов из какого-либо защитного материала. В этом случае увеличивается скорость обработки, а защита не страдает.

Нередко сочетаются оба способа: бетон покрывается специальным веществом, но оно не только находится на его поверхности, но и впитывается внутрь, проникает в его толщу. Такие средства очень эффективны, они могут обеспечивать практически полную гидроизоляцию.

При больших очагах коррозии проводится очистка здания от них. После этого здания обрабатываются антикоррозионными полимерными грунтовками, проводят армирование и заново покрывают слоем бетона.

Защита поверхности бетонных сооружений от влаги, обеспечивается за счет использования сеалантов, в составе которых имеются полимерцементные композиты. Сеаланты — это особые вещества, основной функцией которых является именно защита и повышение прочности бетонных поверхностей. Находящиеся в составе этих веществ компоненты могут буквально просачиваться на несколько сантиметров вглубь, в результате, структура изменяется — получается аналог мембраны, которая может пропускать воду только в одном направлении: изнутри наружу. В итоге только уменьшается, а не колеблется со временем.

Коррозия железобетона

Металлические части конструкции покрывают специальными лакокрасочными защитными материалами.

Разрушению из-за влаги и химических соединений подвержены строения не только из бетона, но и из железобетона. В железобетонных конструкция дополнительно присутствует арматура из металла, которая может стать источником (причиной) коррозии электрохимического типа. Однако, несмотря на это, железобетон — более устойчивый материал, чем обыкновенный бетон. Источником его устойчивости является наличие специального слоя на поверхности; именно он защищает внутреннюю структуру. Но и здесь с течением времени атмосфера, а конкретно углекислый газ и осадки с растворами солей, разрушают этот слой. Защита железобетонной конструкции в этом случае, будет отличаться от способов защиты бетона от коррозии.

Для того чтобы минимизировать последствия электрохимической коррозии и максимально замедлить процесс разрушения, в бетон вводятся специальные вещества. Такие вещества называются ингибиторами металлической коррозии; основное их предназначение — защита материала, посредством создания защитной пленки на поверхности арматуры, важно не допустить ее контакт с бетоном, влагой и окружающим воздухом. Ингибиторы можно наносить на поверхность или добавлять в бетон в процессе производства. Подобная защита гарантирует сохранность железобетонных конструкций от появления коррозии.

Помимо этого, для защиты арматуры железобетона часто применяют и стандартные методы, которые хорошо зарекомендовали себя при использовании в обыкновенных металлических конструкциях. Например, так называемый способ протекторных анодов. При этом способе с каркасом железобетона соединяется другой метал, который в большей степени склонен к электрохимической коррозии. Защита заключается в том, что соединяясь с железобетонным каркасом, идет электрохимическая реакция, разрушению подвергается именно этот металл-болванка. Таким образом, электрохимическая коррозия железобетона начинается только после того, как эта болванка полностью разрушится.

В первую очередь на состояние строительных материалов негативно влияет агрессивная окружающая среда.

Вода, углекислый газ, соли, перепады температур очень часто вызывают коррозию. В связи с этим важнейшей проблемой и задачей номер один при строительстве и последующей эксплуатации любых объектов является защита от коррозии бетона .

Причины коррозии

Структура произведенного на минеральной основе бетона - каппилярно-пористая. Поэтому он очень сильно подвержен негативному воздействию.

Атмосферные явления в пористой структуре бетона образуют кристаллы. Затем они увеличиваются и вызывают трещины.

Хлориды, сульфаты и карбонаты, растворенные в воздухе в большом количестве, тоже разрушительно влияют на строительные конструкции.

Коррозия бетона и ее виды

Коррозия бетона бывает трех видов. Основным критерием для классификации является степень ухудшения его свойств и характеристик.

Коррозия 1 степени - вымываются составные части бетона;

Коррозия 2 степени - образуются продукты коррозии без вяжущих свойств;

Коррозия 3 степени - накапливаются малорастворимые кристаллизующиеся соли, которые увеличивают объем.


Методы защиты бетона

Для защиты бетона от коррозии , а также повышения его долговечности необходимо применять первичную и вторичную его защиту.

Первичная защита подразумевает введение самых разных модифицирующих добавок. Это могут быть стабилизирующие (предупреждают расслоение), пластифицирующие (увеличивают), водоудерживающие и регулирующие процесс схватывания бетонной смеси, ее пористость, плотность и т.д.

Методы вторичной защиты от коррозии бетона подразумевает нанесение защитных покрытий:

Лакокрасочные мастичные покрытия. Они используются при воздействии жидких сред, и непосредственном контакте бетона с агрессивной твердой средой.

Лакокрасочные и акриловые покрытия. Эти средства образуют прочную атмосферостойкую и долговечную защиту. К примеру, акрил создает полимерную пленку, предотвращая тем самымкоррозию бетона . Более того, он защищает поверхность от микроорганизмов и грибков.

Уплотняющие пропитки. Эти вещества придают бетону гидрофобные свойства. Они очень резко повышают водонепроницаемость, а также снижают водопоглощение материалов. Применяются в условиях повышенной влажности и в местах, требующих специальные санитарно-гигиенические мероприятия.

Оклеечные покрытия. Их применяют при воздействии жидких сред (например, если имеет место подтопление бетонной сваи подземными водами). Кроме того, их используют в качестве непроницаемого подслоя для облицовочных покрытий. К примеру, полиизобутиленовые пластины, полиэтиленовая плёнка, рулоны нефтебитума и т. п.


Биоцидные материалы. Они призваны уничтожать и подавлять на бетонных конструкциях грибковые образования. Химически активные элементы проникают в структуру бетона и заполняют микротрещины и поры.

Антикоррозийные покрытия для бетона применяются всюду: в стенах и полах жилых помещений, в гаражных комплексах, фундаменте, коллекторах, очистных сооружениях, теплицах, оранжереях.

Билет№ 19

1) из 400г 50%-ного (по массе) раствора H2SO4 выпариванием удалили 100г воды. чему равна массовая доля H2SO4 в оставшемся растворе??

Масса серной кислоты в растворе
m(H2SO4) = m1(р-ра H2SO4) * W1 / 100 = 400 * 50 / 100 = 200 г.

Масса полученного раствора
m2(р-ра H2SO4) = m1(р-ра H2SO4) - m(H2O) = 400 - 100 = 300 г.

Концентрация серной кислоты в полученном растворе:
W2 = m(H2SO4) * 100 / m2(р-ра H2SO4) = 200 * 100 / 300 = 66,67 %

2) Элементы, проявляющие в соединениях металлические и неметаллические свойства, называют амфотерными, к ним относятся элементы А-групп Периодической системы - Be, Al, Ga, Ge, Sn, Pb, Sb, Bi, Po и др., а также большинство элементов Б-групп - Cr, Mn, Fe, Zn, Cd, Au и др. Амфотерные оксиды называют так же, как и основные, например:

BeO - оксид бериллия
FeO - оксид железа(II)

Al2O3 - оксид алюминия
Fe2O3 - оксид железа(III)

SnO - оксид олова(II)
MnO2 - оксид марганца(IV)

SnO2 - диоксид олова(IV)
ZnO - оксид цинка(II)

Амфотерные гидроксиды (если степень окисления элемента превышает + II) могут находиться в орто - или (и) мета - форме. Приведем примеры амфотерных гидроксидов:

Be(OH)2
- гидроксид бериллия

Al(OH)3
- гидроксид алюминия

AlO(OH)
- метагидроксид алюминия

TiO(OH)2
- дигидроксид-оксид титана

Fe(OH)2
- гидроксид железа(II)

FeO(OH)
- метагидроксид железа

Амфотерным оксидам не всегда соответствуют амфотерные гидроксиды, поскольку при попытке получения последних образуются гидратированные оксиды, например:

SnO2 . nH2O
- полигидрат оксида олова(IV)

Au2O3 . nH2O
- полигидрат оксида золота(I)

Au2O3 . nH2O
- полигидрат оксида золота(III)

Если амфотерному элементу в соединениях отвечает несколько степеней окисления, то амфотерность соответствующих оксидов и гидроксидов (а следовательно, и амфотерность самого элемента) будет выражена по-разному. Для низких степеней окисления у гидроксидов и оксидов наблюдается преобладание основных свойств, а у самого элемента - металлических свойств, поэтому он почти всегда входит в состав катионов. Для высоких степеней окисления, напротив, у гидроксидов и оксидов наблюдается преобладание кислотных свойств, а у самого элемента - неметаллических свойств, поэтому он почти всегда входит в состав анионов. Так, у оксида и гидроксида марганца(II) доминируют основные свойства, а сам марганец входит в состав катионов типа 2+, тогда как у оксида и гидроксида марганца(VII) доминируют кислотные свойства, а сам марганец входит в состав аниона типа MnO4- . Амфотерным гидроксидам с большим преобладанием кислотных свойств приписывают формулы и названия по образцу кислотных гидроксидов, например НMnVIIO4 - марганцовая кислота.

Таким образом, деление элементов на металлы и неметаллы - условное; между элементами (Na, K, Ca, Ba и др.) с чисто металлическими и элементами (F, O, N, Cl, S, C и др.) с чисто неметаллическими свойствами существует большая группа элементов с амфотерными свойствами

3) Напишите выражение для константы равновесия гетерогенной системы CO2+C↔ 2CO. Как изменится скорость прямой реакции-образования CO,если концентрацию CO2 УМЕНЬШИТЬ В 4 РАЗА?

K = 2 / - выражение для константы равновесия.
Пусть было x моль/л CO 2 , тогда после уменьшения концентрации в 4 раза будет x/4 моль/л.
Скорость прямой реакции (до):
v = k* = k*[x]
Скорость прямой реакции (после):
v" = k*" = k*
n = v"/v = (k*) / (k*[x]) = 1/4 - скорость уменьшится в 4 раза.

При повышении давления равновесие сдвигается в направлении, в котором уменьшается суммарное количество молей газов, т.е. влево.

4)Стандартный водоро́дныйэлектро́д - электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах. Водородный электрод (ВЭ) представляет собой пластинку или проволоку из металла, хорошо поглощающего газообразный водород (обычно используют платину или палладий), насыщенную водородом (при атмосферном давлении) и погруженную вводный раствор, содержащий ионы водорода. Потенциал пластины зависит [ уточнить ] от концентрации ионов Н + в растворе. Электрод является эталоном, относительно которого ведется отсчет электродного потенциала определяемой химической реакции. При давлении водорода 1 атм., концентрации протонов в растворе 1 моль/л и температуре 298 К потенциал ВЭ принимают равным 0 В. При сборке гальванического элемента из ВЭ и определяемого электрода, на поверхности платины обратимо протекает реакция:

2Н + + 2e − = H 2

то есть, происходит либо восстановление водорода, либо его окисление - это зависит от потенциала реакции, протекающей на определяемом электроде. Измеряя ЭДС гальванического электрода при стандартных условиях (см. выше) определяют стандартный электродный потенциал определяемой химической реакции.

ВЭ применяют для измерения стандартного электродного потенциала электрохимической реакции, для измерения концентрации (активности) водородных ионов, а также любых других ионов. Применяют ВЭ так же для определения произведения растворимости, для определения констант

Устройство

Схема стандартного водородного электрода:

1. Платиновый электрод.

2. Подводимый газообразный водород.

3. Раствор кислоты (обычно HCl), в котором концентрация H + = 1 моль/л.

4. Водяной затвор, препятствующий попаданию кислорода воздуха.

5. Электролитический мост (состоящий из концентрированного р-ра KCl), позволяющий присоединить вторую половину гальванического элемента.

Коррозия бетона неизбежно рано или поздно под действием агрессивных химических веществ начинает разрушать бетонные и железобетонные изделия, конструкции. Попытаемся разобраться, что такое химическая коррозия бетона и в чём состоит защита бетона от агрессивной среды. Коррозия – процесс разрушения бетона на протяжении длительного времени.
Последствия коррозии бетона влекут за собой снижение прочности конструкций, ухудшение эксплуатационных качеств и, естественно большие материальные затраты.
Поэтому защита бетона от коррозии – важнейшая задача строительства и эксплуатации.

Защита бетона от коррозии выполняется химическими и полимерными пропитками для бетона, которые обеспечивают стойкость к химической агрессии, механическую защиту бетонной поверхности.

Для защиты бетона от коррозии мы производим и предлагаем большой выбор пропиток для бетона.

В разделе Пропитка для бетона дана подробная информация о технологиях и ценах, рекомендации по выбору пропиток.

Нужно различать условия эксплуатации конструкций: на воздухе; в земле (грунтовые воды); под водой.

От вида эксплуатации и будет зависеть окружающая среда, в которой коррозия бетона и железобетона будет протекать по-своему. Соответственно, от этого зависит, какая пропитка для бетона должна использоваться. Коррозия разрушает не только сам бетон, но и находящуюся в нём арматуру. Разрушения могут носить как химический, биологический, так и физический характер. Наличие атмосферно-химического фактора делает бетон уязвимым для саморазрушения, так как происходят процессы, связанные с воздействием на бетон агрессивных веществ из атмосферы – газовая коррозия бетона. Такие как: хлориды, карбонаты, сульфаты; а так же протекающие циклы замораживания и оттаивания. Устойчивость к коррозии зависит от интенсивности агрессивной среды, условий контакта взаимодействия, напора и скорости движения жидких сред, действия грунтовых вод. Интенсивность агрессивности среды может быть разной к бетонам с разной плотностью, а так же к бетонам, сделанным на разных вяжущих веществах. То, что будет вызывать коррозию у бетонов, сделанных на портландцементе, не тронет бетоны, произведённые на шлакопортландцементе или глинозёмистом цементе. Проблемы коррозии, возникающие в твёрдых и газообразных средах, в основном протекают с помощью жидкой фазы.

Виды коррозии бетона

Существует множество факторов и условий, воздействия коррозии на бетон. Выбирая пропитки для бетона необходимо учитывать, в каких средах и при каких условиях (температура, влажность и т.п.) будет эксплуатироваться бетонная поверхность.
Рассмотрим основные виды химической коррозии бетона.

  1. Кислотная коррозия бетона - следствие воздействия органических и неорганических кислот.
  2. Сульфатная коррозия бетона - возникает в результате взаимодействия с сульфатами.
  3. Щелочная коррозия бетона - следствие взаимодействия с щелочами.

Можно отметить два вида агрессивного воздействия среды на бетон. Первое, это воздействие для жидких сред и второе, для газовых.
Воздействие на бетон водной среды происходит в трёх случаях:

  1. Вымывание мягкой водой частиц цементного камня, путём фильтрации воды через бетон.
  2. Воздействие вод с содержанием химических веществ.
  3. Накопление в порах бетона малорастворимых солей и их кристаллизация, с последующим разрушением.

Газовая коррозия бетона в основном протекает из-за содержания в воздухе углекислого газа.

Правильно подобранная пропитка для бетона обеспечит долговременную защиту.

Коррозия бетона и железобетона может протекать на протяжении длительного времени, и имеет несколько степеней агрессивности.

Допустимая глубина (см) разрушения бетона за 50 лет.

Защита бетона от коррозии

Необходима защита бетона от агрессивной среды – покрытие или пропитка для бетона, которые могли бы обеспечить эффективную и долговечную эксплуатацию. Рассмотрим как пример технологию флюатирования бетона. Простая и удобная технология пропитки бетона фторосиликатом Элакор-МБ1 (флюат пропитка для бетона) даёт возможность применить её как для только что набравших прочность бетонов, так и для бетонов с большим сроком службы. Фторосиликат воздействует на активную известь и превращает её в химически-пассивный и механически-прочный фторид кальция, что способствует значительному возрастанию химической стойкости. Кроме того, под воздействием фторосиликата образуются твердые силикаты, что обеспечивает увеличение прочности бетона. Фторосиликатная пропитка для бетона даёт полную защиту от всех негативных факторов окружающей среды, обеспечивая повышенные эксплуатационные качества.

На то, насколько прочны и долговечны будут бетонные конструкции, может влиять качество и степень гидроизоляции перед началом строительства. Исключить попадание в структуру материала веществ, которые будут воздействовать разрушительно, способны лишь хорошо подобранные системы гидроизоляции. Они продлевают срок эксплуатации бетонного сооружения и снижают затраты на реставрацию, а также содержание.

Необходимость защиты

Защита бетона от разрушения на улице необходима по той причине, что описываемый материал хоть и является очень прочным, но в процессе эксплуатации постоянно подвергается разрушающим факторам, среди них осадки, химические реагенты, а также промышленные газы.

Иногда бетон постоянно контактирует с водой, для его защиты в этом случае используются материалы, обеспечивающие высокую гидроизоляцию и устойчивость к воздействию химических и абразивных нагрузок. В данном случае речь идет о бетонных резервуарах, в которых глубина поражения коррозией может достигать 50 см. Если не защитить материал, то со временем он может попросту превратиться в пыль.

Разновидности материалов для защиты

Для защиты бетона на улице используются материалы, исключающие воздействие влаги, коррозии, а также увеличивающие прочность. Это под силу гидрофобизирующим веществам, которые наносятся методом пропитывания. Это позволяет уменьшить угол смачивания, ведь бетон оказывается защищен кремнийсодержащим составом. Преимущество такого подхода состоит в долговечности и водонепроницаемости, а также прочности. Такие вещества представлены эмалями, которые под воздействием щелочей становятся растворимыми и теряют гидрофобные свойства.

Защита бетона от разрушения может быть осуществлена водонепроницаемой пленкой. На поверхности формируется слой из различных смол, например, поливинилхлоридных или полиуретановых. Недостатком способа является низкая паропроницаемость.

Если на покрытие в течение длительного времени будет воздействовать пар, то оно расслоится и разрушится. Для того чтобы исключить эти недостатки, следует совмещать защитный слой и пропитку, однако состав должен быть создан на одной основе. Важно использовать щелочестойкую плёнку, тогда как защитный слой должен обладать повышенной паропроницаемостью.

Защита от разрушения

Рассматривая средства для защиты бетона, вы должны выделить способы, которые позволили бы исключить разрушение материала. К таким средствам защиты можно отнести противогрибковые и антисептические, а также лакокрасочные материалы и пропитки. Уберечь структуру от разрушения можно методом нанесения изоляции и пропитки.

Защита от коррозии

Развитие коррозии происходит за счёт пористости бетона. Это говорит о том, что важно ограничить конструкцию от контакта с влагой и устранить воздействие осадков. Если избежать этого нельзя, то бетон следует изготавливать с повышенной плотностью, чтобы структура была лишена пор.

Иногда на материал наносится защитное покрытие с гидрофобизирующими характеристиками. Защита бетона от воды методом гидрофобизирования является лучшим вариантом предотвращения коррозии. Материал будет отталкивать воду и сохранит пористость структуры, а эксплуатировать конструкцию можно будет при широком диапазоне температур в пределах от -40 до +50 °C.

Гидрофобизирование для выполняется в несколько этапов. В цемент вводятся добавки, увеличивающие плотность и регулирующие пористость. На следующем этапе используются антигрибковые материалы, в качестве них выступают пропитки для уплотнения структуры. Для исключения воздействия влаги применяются лакокрасочные материалы. Для того чтобы предотвратить коррозию, следует использовать ленты из углеволокна. Они отлично подходят для тех участков, где металлическая составляющая сооружения проржавела.

Защита от влаги

Защита бетона раньше осуществлялась с использованием сухих цементных смесей, синтетических листов и прокладок, а также рубероида. Этого недостаточно для полноценной защиты от воды. Для решения проблемы бетонную поверхность необходимо обработать жидкостью с гидрофобизирующими способностями. Покрытие заполнит трещины и поры, обеспечит долговечность и надежную защиту.

Защита бетона от влаги осуществляется по определённому алгоритму. На первом его этапе готовый сухой слой необходимо защитить листом рубероида или водонепроницаемым строительным материалом. С помощью битумной эмульсии обрабатываются швы между листами. Сверху наносится водоотталкивающее покрытие, краска или лак.

Использование анкерного листа

Для защиты бетона сегодня всё чаще используется полимерный лист, который располагается на поверхности в шахматном порядке. Он изготавливается из полиэтилена высокой плотности, обозначающегося аббревиатурой HDPE. Бетонозащитный лист используется для монолитных и сборных железобетонных объектов. Его крепление имеет большое количество точек фиксации, что обеспечивает надежную связь или сцепление с бетоном или раствором.

Форма анкеров формируется методом экструзии при производстве, что гарантирует высокую прочность крепления. Даже при сильных колебаниях температуры и давления оптимальное распределение напряжений обеспечивает сохранение структуры материала, ведь сила воздействия может быть вызвана грунтовыми водами. Анкерный лист для защиты бетона решает множество проблем. Он создает барьер на пути повреждений частицами и химическими веществами.

Слой выступает инфильтратом, исключает коррозию бетона и защищает материал от механических повреждений, которые могут быть вызваны влажностью, вибрацией грунта, а также воздействием корней растений. Анкерный лист можно устанавливать на поверхность при новом строительстве или для санации существующих конструкций. Реконструкция готовых сооружений ликвидирует коррозионный износ и восстанавливает утерянную несущую способность. Полимерный лист компенсирует абразивный износ и исключает дальнейшее разрушение.

Установка анкерного листа

Если защиту бетона вы планируете осуществлять анкерным листом, то необходимо ознакомиться с особенностями его монтажа. На первом этапе материал раскраивается по размерам и форме защищаемой поверхности. Полотно крепится с отступом от края на съемной опалубке или методом индукционной сварки с использованием монтажных дисков.

В пространство между полимерным листом и защищаемой поверхностью заливается бетонная смесь, которая позволяет замонолитить анкерные крепления. С помощью экструзионной сварки стыки между анкерными листами свариваются. Полученный шов обладает 97%-ной прочностью основного материала и помогает создать герметичную оболочку.

Использование состава ВВМ-М

Если вы задумались над вопросом о том, чем покрыть бетон на улице для защиты, то в качестве примера можете рассмотреть состав марки ВВМ-М. Вещество наносится воздушным распылением, а для пропитки поверхности используются кисти и валики. Толщина покрытия и глубина пропитки корректируются расстоянием распылителя от обрабатываемой поверхности.

При выборе краскопульта вы должны предпочесть прибор, который способен выдавать 2 атм. Удалиться от необходимо на 30-50 см. Рекомендуемая толщина покрытия достигает 100 мкм. Если вы планируете пропитывать бетон, то толщина наносимого слоя равна 3 см. Перед формированием каждого последующего слоя не нужно дожидаться высыхания предыдущего. Описываемые материалы изготавливаются из отечественных полимеров, а обходятся недорого, ведь в основе недефицитное сырье.

Защита фундамента

Если перед вами встала необходимость защиты бетона в дома, то можно использовать покрытие боковых поверхностей отработанным машинным маслом и полиэтиленовой пленкой. Основание может быть защищено слоем грунта, уложенного по периметру. Дополнительно можно использовать пенопласт, керамзит или шлак. Это позволяет снизить глубину промерзания грунта и исключить или сократить воздействие негативных факторов на бетон.

Комплексная защита от агрессивных воздействий и влаги

Для того чтобы добиться лучшего эффекта, можно прибегнуть к использованию нескольких технологий. Для этого применяется первичная защита, при которой затворение цементного раствора сопровождается добавлением химических модификаторов и присадок.

Для блокировки трещин следует использовать сульфатные вещества, они помогают от коррозии и обеспечивают прочность и долговечность. Вторичная защита заключается в нанесении мастик, пропиток, растворов и биоцидов. Дополнительной мерой станет защитная отделка, которая предусматривает нанесение штукатурки, установку слоя теплоизоляции и монтаж навесных вентилируемых фасадов.

В заключение

Бетон является очень прочным материалом, который славится своей долговечностью, но в его основе множество пор, через которые неизбежно проникает влага. Когда она замерзает и кристаллизуется, начинает увеличиваться в объемах, что негативно сказывается на целостности материала. Но подобное воздействие не единственное, которое способно разрушить бетон.

Для предотвращения пыления и дальнейшей потери прочности необходимо защитить конструкцию методом добавления к составу раствора специальных веществ, которые снижают пористость. На этапе эксплуатации поверхность можно защитить мастиками и пропитками, которые создают своеобразный барьер на пути влаги.

Loading...Loading...