Системы управления светом. Как управляют освещением


Автоматизированные системы управления освещением отличаются многообразием и обеспечивают комфорт использования, а также экономию энергоресурсов. Современные модели способны регулировать освещение на расстоянии, посылая команды через пульт управления, голосом, посредством сети интернет.

Как работают системы автоматического управления освещением

В роли мозгового центра в любой автоматизированной системе управления выступает контроллер. Его задача – прием команд от пользователя и передача их на электроприбор, выполняющий предусмотренное действие.

На контроллер команды поступают от механического действия пользователей (нажатия на соответствующие кнопки на устройстве), а также через сигналы удаленного управления внутренним освещением. За счет комбинирования вариантов команды могут передаваться одновременно несколькими способами.

После обработки поступивших команд контроллер передает их непосредственно на оборудование с помощью сигнала радиосвязи либо по проводной системе. Поступившая команда распознается устройством и в зависимости от поставленной задачи выполняется включение/выключение света, регулировка яркости освещения.

Автоматизированная система управления освещением помимо передачи команд поддерживает также возможность задания алгоритмов, выполняемых при конкретных условиях. Это может быть включение света в 20.00 при условии, что освещенность снижается до 2лк. Варианты сценариев каждый пользователь подбирает самостоятельно в соответствии с потребностями.

Состав системы автоматического управления освещением от Nero Electronics

Компания Nero Electronics предлагает комплексные решения по автоматизированному управлению освещением. В состав такой системы входят исполнительные устройства и пульты управления.

В роли приемников, передающих команды пользователя на светильники, выступают:

– Радиодиммеры и радиореле линейки Intro II – устройства, работающие со всеми видами ламп (зависит от конкретной модели). К данной группе относится оборудование:

  • 8521 UPM
  • 8521-50
  • 8522 UPM
– Интеллектуальные диммеры и реле линейки Nero II, передающие сигнал по технологии PLC – устройства для светильников с любыми лампами:
  • 8421 DIN (монтаж на DIN-рейку);
  • 8421 UPM (монтаж выполняется в чашку);
  • 8421-50 , 8425-50 (наличие фронтальной панели);
  • 8422 DIN (монтаж на DIN-рейку);
  • 8422 UPM (монтаж выполняется в чашку).

Система дистанционного управления передает команды пользователя посредством пультов линеек Nero II и Intro II .

Создание оптимальной системы автоматического освещения в доме (квартире) требует четкого обозначения предъявляемых к ней требований. По каждой комнате определяется перечень приборов и функции, которые они должны выполнять. Например, расположить в коридоре диммер, включающий освещение при срабатывании датчика, отвечающего за движение. Составив список требований, можно переходить к практической реализации и установке системы управления освещением.

Особенности системы автоматического управления освещением

Автоматическое управление освещением (дом/квартира) реализуется несколькими различающимися способами. Первый из них предполагает размещение в каждой комнате пульта, оснащенного рядом клавиш. Это позволит осуществлять управление домашним освещением без необходимости вставать с дивана. Второй – полностью автоматизированное управление с установкой специальных датчиков. При таком варианте свет включается одновременно со срабатыванием датчика, фиксирующего движение, и выключается после покидания человеком помещения. Автоматическое удаленное управление особо удобно при наличии в доме большого количества доме комнат либо присутствии маленьких детей, за которыми нужно постоянно выключать свет. Установка автоматического удаленного управления не исключает наличие стандартных выключателей с помощью которых можно погасить свет, находясь в комнате.

Среди основных возможностей автоматической системы управления освещением – регулировка светового потока путем изменения показателя яркости. Для выполнения таких действий используется пульт либо выключатель, установленный в комнате. Регулировать яркость также можно посредством записи сценария в программу управления по таймеру.

Система автоматического управления освещением позволяет устанавливать время включения/отключения света, при этом настройки могут меняться также автоматически. Для вечернего и ночного времени можно задать настройки включения света с половинной мощностью, обеспечивающего достаточную освещенность для перемещения по комнате. Полная автоматизация позволяет выполнять управление наружным освещением, это особенно актуально для владельцев частных домов: свет на участке включится без участия человека.

Отдельная функция системы автоматизации – контроль за освещением в зависимости от времени суток. При недостаточной освещенности комнаты даже в дневное время система сработает автоматически и включит лампы. Подобная функция востребована в домах, где есть оранжерея либо зимний сад. Владельцам больше не придется заботиться о достаточной освещенности своих зеленых питомцев, а также волноваться о подсветке растений во время отъезда.

Система автоматизированного освещения востребована потребителями, склонными к разъездному образу жизни. Достаточно установить несколько параметров, и интеллектуальная система создаст эффект присутствия хозяина в помещении. Включение/отключение освещенности в разных комнатах будет проходить автоматически. Имитация присутствия нередко позволяет избежать проникновения посторонних на территорию дома, когда его владельцы будут находиться в отъезде.

Управление автоматическим освещением обеспечивает удобство и эффективность в жилых помещениях любого типа вне зависимости от их размера или местоположения. «Умные» системы освещения способны значительно упростить нашу жизнь, экономя электроэнергию и расширяя функциональные возможности привычных светильников.

Автоматизированная система управления наружным освещением (АСУНО) предназначена для многоуровневой автоматизации управления наружным освещением города с применением современных технических решений. Применение автоматизированных систем управления позволяет сделать освещение города легкоуправляемым, экономичным и оперативным. АСУНО обеспечивает оперативное переключение режимов освещения по графику на уровне сегментов осветительной сети, удаленный контроль и управление до уровня светоточки, а также конфигурирование каждого сегмента. Связь с центральным диспетчерским пунктом по радиоканалу, сотовой связи или оптоволоконной линии связи.

Внедрение автоматизированной системы управления наружным освещением решают следующие задачи:

  1. Обеспечение оптимального и стабильного уровня освещенности в соответствии с действующими нормативами;
  2. Сокращение эксплуатационных затрат и сокращение численности персонала;
  3. Повышение надежности и эффективности работы сети наружного освещения;
  4. Обеспечение оперативного контроля состояния электротехнического оборудования и линий наружного освещения;
  5. Обеспечение технического и коммерческого учета потребленной электроэнергии;
  6. Существенное улучшение показателей энергоэффективности.

Преимущества использования системы управления наружным освещением:

  1. Повышение надежности работы оборудования за счет исключения устройств контактной коммутации и применения блоков бесконтактной коммутации силовых линий;
  2. Замена электромагнитных пускорегулирующих аппаратов на электронные ПРА;
  3. Удаленный контроль, конфигурирование и управление оборудованием в линиях освещения с точностью до конкретного светильника;
  4. Экономичность системы;
  5. Совместимость системы с уже существующим в городе силовым и осветительным оборудованием;
  6. Возможность наращивания существующих систем освещения от одной улицы до целого города;
  7. Возможность подключения дополнительных диспетчерских пунктов, включаемых в локальную сеть с ЦДП, а также мобильных диспетчерских пунктов (ноутбук) при наличии выхода в интернет.

Обеспечить эффективное функционирование осветительной системы возможно, применяя средства автоматического управления освещением. Управление осветительной установкой осуществляется двумя основными способами: отключением всех или части светильников (дискретное управление) и плавным изменением мощности светильников (для групп светильников или индивидуально).

К системам дискретного управления освещением относятся различные фотореле и таймеры. Принцип действия основан на включении и отключении питания по сигналам установленных датчиков или в зависимости от времени суток по предварительно заложенной программе. К системам дискретного управления освещением относятся также автоматы, оснащенные датчиками присутствия. Они отключают светильники в помещении спустя заданный промежуток времени после того, как из него удаляется последний человек. Это наиболее экономичный вид систем дискретного управления, однако к побочным эффектам их использования относится возможное сокращение срока службы ламп за счет частых включений и выключений. Системы плавного регулирования мощности освещения по своему устройству несколько сложнее.

Современные системы управления освещением сочетают в себе значительные возможности экономии электроэнергии:

  1. Точное поддержание искусственной освещенности в помещении на заданном уровне. Достигается это введением в систему управления освещением фотоэлемента, находящегося внутри помещения и контролирующего создаваемую осветительной установкой освещенность. Несмотря на наличие в подавляющем большинстве помещений естественного освещения в светлое время суток, мощность осветительной установки рассчитывается без его учета. Если поддерживать освещенность, создаваемую совместно осветительной установкой и естественным освещением, на заданном уровне, то можно еще больше снизить мощность осветительной установки.
  2. В определенное время года и часы суток возможно даже использование одного естественного освещения. Эта функция может осуществляться тем же фотоэлементом, что и в предыдущем случае, при условии, что он отслеживает полную (естественную + искусственную) освещенность. При этом экономия энергии может составлять 20-40%.
  3. Дополнительная экономия энергии в освещении может быть достигнута отключением осветительной установки в определенные часы суток, а также в выходные и праздничные дни. Эта мера позволяет эффективно бороться с забывчивостью людей, не отключающих освещение на рабочих местах перед своим уходом. Для ее реализации автоматизированная система управления освещением должна быть оборудована собственными часами реального времени.
  4. Учет присутствия людей в помещении. При оборудовании системы управления освещением датчиком присутствия можно включать и отключать светильники в зависимости от того, есть ли люди в данном помещении. Эта функция позволяет расходовать энергию наиболее оптимально, однако ее применение оправдано далеко не во всех помещениях. В отдельных случаях она может даже сокращать срок службы осветительного оборудования и производить неприятное впечатление при работе. Экономия, получаемая за счет отключения светильников по сигналам таймера и датчиков присутствия электроэнергии, составляет 10-25 %.

Дистанционное беспроводное управление осветительной установкой. Хотя такая функция не является автоматизированной, она часто присутствует в автоматизированных системах управления освещением благодаря тому, что ее реализация на базе электроники системы управления освещением очень проста, а сама функция добавляет значительное удобство в управлении осветительной установкой.

Методами непосредственного управления осветительной установкой является дискретное включение/отключение всех или части светильников по командам управляющих сигналов, а также ступенчатое или плавное снижение мощности освещения в зависимости от этих же сигналов.

Ввиду того что современные регулируемые электронные ПРА имеют ненулевой нижний порог регулирования, в современных автоматизированных системах управления освещением применяется комбинация плавного регулирования вплоть до нижнего порога с полным отключением ламп в светильниках при его достижении.

Классификация систем автоматического управления освещением.

Системы автоматического управления освещением условно можно разделить на 2 основных класса – так называемые локальные и централизованные.

Для локальных систем характерно управление только одной группой светильников, в то время как централизованные системы допускают подключение практически бесконечного числа раздельно управляемых групп светильников.

В свою очередь, по охватываемой сфере управления локальные системы могут быть подразделены на «системы управлении светильниками» и «системы управления освещением помещений», а централизованные – на специализированные (только для управления освещением) и общего назначения (для управления всеми инженерными системами здания - отоплением, кондиционированием, пожарной и охранной сигнализацией и т.д.).

Локальные «системы управления светильниками в большинстве случаев не требуют дополнительной проводки, а иногда даже сокращают необходимость в прокладке проводов. Конструктивно они выполняются в малогабаритных корпусах, закрепляемых непосредственно на светильнике или на колбе одной из ламп. Все датчики, как правило, составляют один электронный прибор, в свою очередь, встроенный в корпус самой системы.

Часто светильники, оборудованные датчиками, обмениваются между собой информацией по проходам электрической сети. За счет этого даже в случае, если в здании остался единственный человек, находящиеся на его пути светильники останутся включенными.

Централизованные системы управления освещением, наиболее полно отвечающие названию «интеллектуальных», строятся на основе микропроцессоров, обеспечивающих возможность практически одновременного многовариантного управления значительным (до нескольких сотен) числом светильников. Такие системы могут применяться либо только для управления освещением, либо также и для взаимодействия с другими системами зданий (например, с телефонной сетью, системами безопасности, вентиляции, отопления и солнцезащитных ограждений).

Централизованные системы выдают также управляющие сигналы на светильники по сигналам локальных датчиков. Однако преобразование сигналов происходит в едином (центральном) узле, что предоставляет дополнительные возможности вручную управлять освещением здания. Одновременно существенно упрощается ручное изменение алгоритма работы системы.

При системах централизованного дистанционного или автоматического управления освещением питание цепей управления разрешается от линии, питающей освещение. Для помещений, имеющих зоны с разными условиями естественного освещения, управление рабочим освещением должно обеспечивать включение и отключение светильников группами или рядами по мере изменения естественной освещенности помещений.

Управление светом бывает местным и дистанционным. В первом случае включение и отключение освещения производится при помощи коммутационных аппаратов: обычных, автоматических или сумеречных выключателей (фотореле), датчиков движения, рубильников. Такие аппараты управления располагают внутри зданий, при входе в них или на улице. Во втором случае все приборы управления освещением сосредотачивают в определенном месте, например, в шкафах управления, находящихся на расстоянии.

Местное управление осветительными установками в свою очередь делится на: групповое и индивидуальное. При групповом управлении каждый аппарат включения/отключения «контролирует» группу светильников. При индивидуальном регулировании на каждый светильник устанавливают отдельный выключатель. Также местное управление бывает ручным, когда включение или отключение ламп производится обслуживающим персоналом или жителями, и автоматическим, при котором процессом управляют упомянутые выше фотореле, датчики движения, освещения или времени.

Дистанционное управление делится на 3 вида. В первом случае работа осветительной установки может контролироваться с распределительного щита при помощи коммутационных аппаратов, установленных на линии. Во втором случае контроль осуществляется из пунктов управления посредством устройств, которые воздействуют на катушки магнитных пускателей или контакторов током определенного напряжения. Здесь также управление бывает автоматическим и ручным.

Третий вид дистанционного контроля - беспроводное управление освещением. Он подразумевает использование дистанционных пультов управления, смартфонов и компьютеров с установленным на них специализированным программным обеспечением и тому подобных устройств.

Дистанционное управление светом при помощи пульта

Управление светом с пульта в основном используется в квартирах. Сам процесс ничем не отличается от процесса переключения каналов телевизора. Человек нажимает на кнопки и лампы как по волшебству загораются. Каждой кнопкой пульта можно управлять как одним светильником, так и их группой.

Процесс управления заключается в следующем: лампы в квартире соединяются с силовым блоком, при подаче сигнала на этот блок с пульта, свет включается или отключается. Сам блок монтируется в стену или в люстру и соединяется с сетью 220 вольт.

Пульты дистанционного управления бывают механическими и цифровыми. Механические устройства производятся с количеством кнопок от 4 до 16 (в основном), может быть и другое количество. На одну кнопку, как говорилось выше, можно подключить одну группу светильников. Цифровые устройства программируемые. В их память можно задать 200-250 групп и более.

Пульты отличаются размером. Есть миниатюрные устройства, которые можно прикрепить на связку ключей, как брелок, а есть пульты, размером чуть меньше тех, что используются для переключения каналов телевизора. Для управления светом в кинотеатрах, клубах, театрах используют специализированные мощные пульты длиной 50-80 см., шириной - 40-50 сантиметров. Они оснащены встроенным жестким диском и устройством чтения «DVD-болванок». К ним можно дополнительно подключать сенсорные или простые дисплеи, а также процессоры.

Дистанционное управление освещением с компьютера или смартфона

Очень удобно управлять освещением с компьютера или телефона. В обоих случаях контроль осуществляется при помощи web-приложения, установленного на девайсах. Web-приложение - мини-сайт, который открывается любым браузером. Установив приложение в своей локальной сети, управлять светом в квартире можно с любого компьютера или телефона, подключенных к этой сети. При желании доступ к web-приложению можно осуществлять и из внешних сетей и управлять освещением через интернет. Для этого придется произвести нужные настройки. Контролировать потребление электроэнергии через интернет удобно тем, что делать это можно даже находясь в другом городе или другой стране.

Для работы системы недостаточно одного приложения. Необходим USB-адаптер и несколько силовых блоков. Силовые блоки используются для подключения нагрузки (светильников) к бытовой сети. Управление светильниками происходит посредством радиосигналов, которые поступают на блоки от USB-адаптера. USB-адаптер, в свою очередь, подключен к компьютеру через соответствующий порт.

Управление освещением по радиоканалу стало популярным. Многие компании предлагают приложения для дистанционной работы со светом. Как правило, всё необходимое программное обеспечение можно скачать с их сайта и даже попробовать настроить систему онлайн (без установки программы на компьютер). Некоторые компании предоставляют инсталлятор, который автоматически устанавливает и настраивает все компоненты, необходимые для дальнейшей работы. Наиболее популярные программы дистанционного управления светом это: Noolite Web Control Panel и Unica Wireless.

Управление светом с использованием радиовыключателей

Радио-выключатели удобны тем, что их можно расположить в любом месте квартиры, например, возле своей кровати, около входной двери, на ручке кресла. Система радиоуправления состоит из пульта управления, который внешне похож на стандартный выключатель и блока-приемника сигналов, подключаемого к нагрузке, который также дает команды на коммутацию цепи освещения. Дальность действия радиосигнала - 80-100 метров при условии отсутствия внешних препятствий (бетонных или металлических конструкций). Чтобы обеспечить прохождение сигнала используют ретрансляторы или усилители.

Одна из популярных систем управления светом по радиоканалу - «Ноолайт», о которой уже упоминалось ранее. С ее помощью можно управлять не только светом, но и всей электроникой в квартире. В комплект системы входят: радиопульт, который питается от батарейки и силовые блоки (контроллеры), их подбирают с учетом типа и мощности нагрузки. Всего разработано три вида блоков:

  1. Тип SL - контроллеры предназначены для управления всеми электро- и свето-приборами;
  2. Тип SN - блоки используются для управления светильниками с установленными в них или лампами накаливания, они также позволяют регулировать уровень освещенности;
  3. Тип ST - контроллеры пригодны для регулирования работы точеных галогенных (через трансформатор) и светодиодных (без драйвера) светильников, а также ламп накаливания и галогенных ламп на 220 В.

Местное управление освещением с двух мест

Нередко можно встретить систему управления освещением с двух и более мест. Ее организуют в коридорах, на лестничных площадках, в жилых помещениях, на предприятиях. Делают это для того, чтобы сделать процесс управления светом максимально удобным и разумно расходовать электроэнергию. В комнате один выключатель можно разместить на входе в нее, второй - около своей кровати и выключать свет непосредственно оттуда. На лестничной площадке аналогично - один выключатель на входе, второй, например, возле лифта.

Для управления освещением с двух мест используют не стандартные выключатели, а проходные, а для управления из трех точек - перекрестные (перекидные). Проходные выключатели бывают с одной и двумя клавишами. Одноклавишные устройства используются для управления одним светильником, двухклавишные - группой.

Применение проходных выключателей обусловлено их конструкцией, которая позволяет корректно управлять освещением. У стандартного выключателя один вход и один выход, у проходного одноклавишного один вход и два выхода, при этом электричество, поступившее на вход, может подаваться поочередно на один и другой выход (переключатель меняет положение). Это говорит о том, что свет будет загораться всегда, независимо от того, какой выключатель задействован. В случае с простыми выключателями все выглядит следующим образом: человек заходит в подъезд и включает свет. Дойдя до лифта, он свет выключает. Другой человек, который зайдет с улицы не сможет включить свет, потому что дальний выключатель не соединен с силовой цепью (разомкнут). Это правило будет работать и в обратном направлении. В случае с проходными выключателями цепь будет замыкаться всегда, смотрите фото.

При подключении проходных одноклавишных выключателей надо учитывать тот факт, что для соединения их между собой и с силовой цепью в распределительной коробке требуется трехжильный провод.

И энергосбережение, а так же про экологическое строительство, целью которого является увеличение экономии, долговечности, комфорта, качества и конечно же сокращение влияния здания на окружающую среду, все это достигается с помощью различных систем управления, одна из которых — это система управления освещением.

Экономический эффект от применения системы управления

Управляя освещением в автоматическом или полуавтоматическом режиме, в зависимости от присутствия, освещенности и времени, мы можем значительно ограничить потребление электроэнергии. Например, регулируя светильники, поддерживать постоянную освещенность над рабочим местом или выключать освещение, когда освещенности в помещении стало достаточно. Это значит, что при том же уровне комфорта, мы тратим гораздо меньше электроэнергии. Не зря системы управления освещением обязательно присутствуют в так называемых “умных домах”, но как правило их функционал (групповое управление, включение в разное время суток, и т.д) заключается в удобстве использования, интеграции освещения в общую систему автоматизации (для различных сценариев) и не нацелен на экономию.

Где используются системы управления освещением

Как сказано выше, системы управления освещением или значительно экономят электроэнергию или же используются для комфорта в умных домах. Для значительной экономии электроэнергии, профессиональные системы управления освещением применяют на самых разных объектах:

  • офисные и административные здания;
  • гостиницы;
  • парковки и охраняемые территории;
  • многоквартирные жилые дома;
  • промышленные предприятия;
  • торговые комплексы;
  • учебные учреждения;

Очень важно грамотно спроектировать систему управления освещением еще на этапе планирования здания, но возможно её применение и в эксплуатирующемся здании. Применить в проекте подходящее и надежное , продумать управление группами освещения, спланировать алгоритм работы системы, все это необходимо для стабильной работы системы. Естественно, что для каждого типа объекта система управления будет индивидуальна, но и типовые решения для помещений также имеются.

Задачи, которые решает система управления освещением

  1. Экономия электроэнергии. Мы уже не раз писали, что позволяет в разы экономить потребляемую электроэнергию освещения, в зависимости от того, где применяется система. Энергоэффективность в каждом случае .
  2. Поддержание постоянного уровня освещенности при наличии присутствия в помещениях.
  3. Группы освещения в помещениях и на прилегающей территории объединены в единую систему. В случае использования масштабируемых решений это обеспечит взаимодействие и контроль всех процессов системы управления.
  4. Автоматическое или полуавтоматическое управление освещением, интеграция с общей системой автоматизации и диспетчеризации здания.
  5. Автоматическое управление по заранее запрограммированным параметрам.
  6. Система позволяет контролировать присутствие, измерять текущую освещенность, управлять временем, и многое другое.

Существуют локальные системы управления, с применением только датчиков движения, присутствия и освещенности. Датчики в свою очередь уже имеют все необходимые устройства в одном корпусе для автоматического управления освещением по вышеуказанным факторам.
В этих решениях датчики могут управлять не только освещением, но и другими нагрузками, такими как кондиционеры, вентиляторы, и другими. Их включение и выключение не должны зависеть от текущей освещенности. Например, когда человек заходит в кабинет, освещенности достаточно и свет не включается, но кондиционер должен включиться. Локальные системы, не могут в полном объеме интегрироваться в общую систему диспетчеризации здания, поэтому существуют шинные системы управления освещением которые работают на разных протоколах, и с помощью специальных шлюзов свободно интегрируются в различные системы верхнего уровня.

Оборудование для шинных систем управления освещением

Для каждой задачи набор устройств будет отличаться. Попробуем перечислить самые необходимые:

  1. Блоки логики, контроллеры, шлюзы, актуаторы – управляющие устройства
  2. Датчики присутствия, движения, освещенности – регистраторы событий
  3. Различные выключатели – ручное управление
  4. Светильники или иные нагрузки – управляемые устройства
  5. Пульты, смартфоны, планшеты, панели управления – дистанционное управление

Принципы работы различных систем управления

Принципы работы локальной системы управления освещением

Например, возьмем управление освещением в кабинетах или офисах, в них применяются разные технологии в зависимости от потребностей заказчика. Возможно реализовать два типа управления:

  • обычное включение/выключение по текущей освещенности и присутствию сотрудника
  • диммирование светильников с поддержанием постоянной освещенности на рабочих местах, а также ориентирующим освещением без присутствия.

В эти решения возможно интегрировать простой кнопочный выключатель для ручного управления освещением.

Принцип работы системы управления с простым включением/выключением

Датчики присутствия работают по следующему сценарию: когда сотрудник с утра приходит на свое рабочее место или заходит в кабинет, датчик его фиксирует и измеряет освещенность (далее датчик измеряет освещенность при регистрации каждого движения). Как правило утром в зимний период естественного света недостаточно и датчик включает искусственное освещение. В течение дня увеличивается количество естественного света, например до 500 Lux, датчик отключает светильники. В вечернее время естественного освещения не достаточно, и датчик снова включает освещение. Когда заканчивается рабочий день или когда сотрудник выходит из кабинета датчик перестает его фиксировать и после временной задержки выключает искусственное освещение. Летом, при достаточном количестве естественного света, искусственный свет может не включаться в течении рабочего дня, тем самым значительно экономить электроэнергию.

Принцип работы системы управления с диммированием по DALI (broadcast)

Датчики присутствия работают по следующему сценарию: когда сотрудник с утра приходит на свое рабочее место или заходит в кабинет, датчик его регистрирует и измеряет освещенность. В случае отсутствия естественного света, например с утра в зимний период, светильники разгораются на 100%. В течение дня увеличивается количество естественного света в помещении, датчик измеряет текущую освещенность и регулирует светильники таким образом, чтобы в сумме естественного и искусственного освещения постоянно было 500Lux. При достижении естественным светом порога свыше 500Lux датчик отключает светильники на то время, пока суммарное освещение не опустится ниже заданного порога. С помощью данного решения можно построить полноценную локальную систему управления освещением по присутствию и параметрам освещенности, без дополнительных устройств, т.к. датчик – это блок питания для светильников DALI и контроллер. Достаточно одного датчика, чтобы управлять светильниками DALI по заданной освещенности и присутствию сотрудников.

Принципы работы шинной системы управления освещением

С помощью шинных систем, можно значительно расширить возможности работы системы управления освещения и диспетчеризировать все процессы в единую систему автоматизации здания (BMS). С помощью устройств шинной системы управления освещением можно написать любой логический сценарий:

  • создать календарь событий (когда человек пришел, ушел, какая освещенность была, стала и т.д)
  • вывести статусы и срок эксплуатации светильников (актуально для эксплуатирующих компаний)
  • сделать дистанционное управление на планшетах, смартфонах
  • вывести контроль и управление далеко за пределы здания
  • и многое другое.

С развитием технологий появилось много различных протоколов управления освещением. Начиналось все с простейших аналоговых систем 0-10V, которые имеют множество ограничений, но и сейчас применяются в различных решениях. На смену аналоговым системам со временем пришли цифровые технологии.

Наиболее популярные протоколы управления освещением сейчас:

  • DIM(0-10V)
  • Слаботочные и IP системы

Подробнее о каждом из них мы напишем в одном из следующих обзоров. на нашу рассылку и узнавайте первыми о новых статьях.

В статье рассматриваются вопросы необходимости проведения автоматизации освещения, классификация существующих систем и этапы реализации типового проекта модернизации.

Трудно найти такую отрасль промышленности или народного хозяйства, где бы отсутствовала потребность в производственных площадей и рабочих мест. К его организации предъявляются достаточно серьезные требования, особенно со стороны контролирующих органов в сфере охраны труда. Но в то же время не следует забывать, что все элементы таких систем (в простейшем варианте – комплекс осветительных приборов) потребляют электричество, за которое приходится платить и довольно много. Желание сэкономить в такой ситуации выглядит более чем естественным, но чтобы решить проблему, как говорится, «в духе времени» одной замены старых лампочек накаливания на светодиодные будет недостаточно. Оптимальным вариантом, несмотря на требуемые капиталовложения, является автоматизация систем освещения, которая позволит сэкономить куда больше за счет эффективного управления имеющимся ресурсом без потери в комфорте.

Зачем нужно автоматизировать освещение?

Не секрет, что комплексное решение подобной задачи невозможно без разработки комплексного проекта, подбора подходящего по характеристикам оборудования и последующего его монтажа на объекте. Чтобы от подобных действий был реальный положительный эффект, их реализацию лучше доверить какой-нибудь профильной организации. , разработка проектной документации, закупка оборудования, монтажные и пуско-наладочные работы и т. д. – это серьезная нагрузка на бюджет и очевидно, может потребовать поиска и привлечения инвестиций.

Для большинства небольших предприятий такой груз уже на старте может стать серьезным поводом отказаться от модернизации. Но давайте взглянем на вопрос со стороны какого-нибудь среднестатистического жителя нашей страны, у которого в очередной раз на кухне сгорела обычная 60-ватная лампочка. Вариантов действий у него несколько:

  1. Купить такой же 60-Вт аналог . Решение, как говориться, бюджетное, поскольку стоит такая лампочка раз в 5-10 меньше чем самая дешевая светодиодная. Об экономии в таком случае можно и не мечтать, особенно при коротком световом дне. Так, если предположить, что такая лампочка в среднем работает до 8 часов в сутки (зимой это более чем реально), то за месяц на одном приборе можно получить до 14 кВт×час на счетчике и до 13 грн в квитанции. Если будет работать 5 лампочек, соотношение вырастет до 70 кВт×час и 65 грн, при 10 приборах – до 140 кВт×час и 160 грн соответственно. Тенденция не очень утешительная, если учесть, что в доме электричество потребляют и другие бытовые приборы;
  2. Купить светодиодную лампочку . Аналогом по светоотдаче для 60-ватной лампы накаливания является LED-источник мощностью порядка 4 Вт. Он потребляет в 15 раз меньше энергии, а значит, сумма в платежке уменьшится пропорционально. Естественно, дороже, но и работает не в сравнение дольше;
  3. Использовать интеллектуальные системы . Экономии в предыдущем случае большинству может оказаться достаточно, но есть реальная возможность снизить потребление еще больше. Например, взять те же LED-лампочки, но в добавок использовать элементы системы автоматизации управления освещением (АСУО), скажем, простейшие датчики движения, освещенности и т. п. В этом случае, каждый прибор будет включаться по необходимости, например, когда человек приближается к нему.

Конечно, в последнем случае придется вложиться в оборудование, но в перспективе такой подход окупится более чем реальной экономией электроэнергии. А теперь представим себе на минутку, какой эффект от подобной модернизации будет иметь более-менее с несколькими сотнями рабочих, посменным графиком, большим количеством оборудования и производственных площадей.

Какими бывают СУО?

В зависимости от поставленных целей и задач модернизации освещения, для ее реализации может потребоваться достаточно большой перечень оборудования. Это и непосредственно осветительные приборы, комплекты датчиков, выключатели, и т. д. Именно масштабы предстоящей модернизации влияют на классификацию подобных систем и позволяют выделить два их основных вида:

  • Локальная СУО . Наиболее простой вариант системы, при котором контроль осуществляется одним или несколькими осветительными приборами. В таком случае требуется минимальный набор вспомогательных средств – иногда блоки управления являются встроенными в сам светильник;
  • Централизованная СУО . Это система более высокого уровня, в которой может быть реализована полноценная автоматизация управления освещением. Может состоять из большого количества контуров, в том числе, различных инженерных сетей объекта модернизации. Наиболее яркий пример – любой современный крупный торгово-развлекательный центр. Для реализации на практике требует применения большого количества оборудования, связанного сложной иерархией построения, специальных программных комплексов и обеспечения. Как правило, в этом случае имеет место центральный пункт управления всей сетью, а также, при ее значительных объемах, локальные узлы контроля.

Кроме того, возможна классификация по количеству и качеству (техническим возможностям) используемого оборудования: начального, среднего и топового уровня. Базовые комплектации включают сами осветительные приборы, простейшие датчики и автоматику, а топовые – целые комплексы вспомогательных систем с расширенным функционалом, программные системы управления, в том числе, с использованием беспроводных технологий.

Как происходит установка и автоматизация систем освещения?

Реализовать на практике такой проект даже с не самой сложной постановкой задач не так то просто. Во-первых, тот специалист или их группа, которые будут заниматься этим вопросом, должны быть в полной мере компетентны. Это значит, не только наличие профильных знаний и навыков, но и большой практический опыт.

Процесс внедрения автоматизированных систем управления для освещения объекта должен проходить в несколько этапов:

  • Аудит . Прежде чем приступить к разработке проекта, необходимо оценить состояние объекта, его размеры, производственное предназначение, наличие существующих систем освещения и питания;
  • Разработка и согласование . На этом этапе проводятся необходимые расчеты, целью которых является выбор оптимальной схемы освещения и соответствующего по характеристикам оборудования;
  • Коммерческое предложение . После согласования проекта с заказчиком последнему предоставляется его финансовое обоснование, включая расчет срока окупаемости (необходимое условие при использовании внешних капиталовложений);
  • Поставка оборудования . После решения всех финансовых вопросов происходит изготовление или закупка необходимого для реализации проекта оборудования и расходных материалов;
  • Монтаж . Завершающим этапом модернизации является непосредственная установка всех элементов системы освещения.

На этом можно было бы ставить точку, но еще одним неотъемлемым этапом работ является пуско-наладка. Это и неудивительно, ведь кроме приходится использовать комплекс датчиков и прочих приборов контроля/управления, которые предстоит протестировать и настроить в соответствии с поставленными задачами. Без этого даже самая внешне не сложная система не будет работать согласованно.

Подробнее

Экспортные истории: как Украина «несет свет» в Европу

Подробнее

Модернизация системы электроосвещения на ДТЭК Добропольская ЦОФ

Подробнее

Что такое теплоотвод в светодиодном светильнике?

Подробнее

Сколько в год можно сэкономить на электроэнергии с использованием светодиодного освещения?

Подробнее

20 Сен

Энергоэффективное освещение, как конкурентное преимущество

Подробнее

Особенности эксплуатации светодиодного освещения

Подробнее

Окупаемость инвестиций в модернизацию системы освещения

Подробнее

Оптическая система LED светильника: линзы, отражатели

Loading...Loading...