Интерполяционная формула лагранжа. Интерполяционный многочлен в форме лагранжа Интерполяционный многочлен лагранжа формула

Будем искать интерполяционный многочлен в виде

ВАНДЕРМОНД АЛЕКСАНДР ТЕОФИЛЬ (Vandermonde Alexandre Theophill; 1735-1796)- французский математик, чьи основные работы относятся к алгебре. В. заложил основы и дал логическое изложение теории детерминантов (определитель Вандермонда), а также выделил ее из теории линейных уравнений. Он ввел правило разложения детерминантов с помощью миноров второго порядка.

Здесь 1.(х) - многочлены степени л, так называемые ЛАГРАНЖЕ- ВЫ МНОГОЧЛЕНЫ ВЛИЯНИЯ, удовлетворяющие условию

Последнее условие означает, что любой многочлен l t (x) равен нулю при каждом х-у кроме х. у т. е. х 0 у x v ...» х { _ v x i + v ...» х п - корни этого многочлена. Следовательно, лагранжевы многочлены Ifjx) имеют вид

Так как по условию 1.(х.) = 1, то

Таким образом, лагранжевы многочлены влияния запишутся в виде

а интерполяционный многочлен (2.5) запишется в виде

ЛАГРАНЖ ЖОЗЕФ ЛУИ (Lagrange Joseph Louis; 1736- 1813) - выдающийся французский математик и механик, наиболее важные труды которого относятся к вариационному исчислению, к аналитической и теоретической механике. В основу статики Л. положил принцип возможных (виртуальных) перемещений. Он ввел обобщенные координаты и придал уравнениям движения механической системы форму, названную его именем. Л. получил ряд важных результатов в области анализа (формула остаточного члена ряда Тейлора, формула конечных приращений, теория условных экстремумов); в теории чисел (теорема Лагранжа); в алгебре (теория непрерывных дробей, приведение квадратичной формы к сумме квадратов); в теории дифференциальных уравнений (отыскание частного решенияу изучение обыкновенного дифференциального уравнения первого порядка, линейного относительно искомой функции и независимой переменной, с переменными коэффициентами, зависящими от производной от искомой функции); в теории интерполирования (интерполяционная формула Лагранжа).

Интерполяционный многочлен в форме (2.6) называется ИНТЕРПОЛЯЦИОННЫМ МНОГОЧЛЕНОМ ЛАГРАНЖА. Перечислим основные достоинства этой формы записи интерполяционного многочлена.

  • Число арифметических операций, необходимых для построения многочлена Лагранжа, пропорционально п 2 и является наименьшим для всех форм записи.
  • Формула (2.6) в явном виде содержит значения функций в узлах интерполяции, что бывает удобно при некоторых вычислениях, в частности, при построении формул численного интегрирования.
  • Формула (2.6) применима как для равноотстоящих, так и для неравноотстоящих узлов.
  • Интерполяционный многочлен Лагранжа особенно удобен, когда значения функций меняются, а узлы интерполяции неизменны, что имеет место во многих экспериментальных исследованиях.

К недостаткам этой формы записи можно отнести то, что с изменением числа узлов приходится все вычисления проводить заново. Это затрудняет проведение апостериорных оценок точности (оценок, получающихся в процессе расчета).

Введем функцию ю л f , = (х - х 0)(х - Xj)...(x - х п) = fl (* “ *;)

Отметим, что ш п + : (х) есть многочлен степени п + 1. Тогда формулу (2.6) можно записать в виде

Приведем формулы линейной и квадратичной интерполяции по Лагранжу:


Многочлен Лагранжа является в формуле (2.8) многочленом 1-й и в формуле (2.9) - многочленом 2-й степени.

Эти формулы наиболее часто используются на практике. Пусть задан (п + 1) узел интерполяции. На этих узлах можно построить один интерполяционный многочлен п -й степени, (п - 1) многочлен первой степени и большой набор многочленов степени меньше п, опирающихся на некоторые из этих узлов. Теоретически максимальную точность обеспечивает многочлен более высокой степени. Однако на практике наиболее часто используют многочлены невысоких степеней во избежание погрешностей при расчетах коэффициентов при больших степенях многочлена.

Пусть на отрезке в некоторой последовательностиузловзадана функциясвоими значениями, где. Задача алгебраического интерполирования состоит в построении многочленастепени, удовлетворяющего условию интерполирования:.

Известно, что существует единственный полином степени не выше , принимающий в исходных точках заданные значения. Коэффициентыполиномаможно определить из системы уравнений:

Определитель этой системы есть определитель Вандермонда, и, следовательно, система имеет единственное решение.

Пример. Построить интерполяционный многочлен , совпадающий с функциейв точках.

Решение. Пусть , поэтому имеем

Поэтому при.

Многочлен Лагранжа

Будем искать многочлен в виде линейной комбинации множеств степени :.

При этом потребуем, чтобы каждый многочлен во всех узлах интерполяции, за исключением одного, где он равен 1. Легко проверить, что этим условиям отвечает многочлен вида

.

Действительно, . Причислитель выражения равен 0. По аналогии получим:

,

Подставив эти формулы в исходный многочлен, получим:

Эта формула называется интерполяционным многочленом Лагранжа.

Пример. Построить интерполяционный многочлен Лагранжа , совпадающий с функциейв точках

.

Решение. Составим таблицу

Подставляя эти значения в формулу Лагранжа, получим:

Если функция непрерывно дифференцируема до-го порядка включительно, то остаточный член интерполяционного многочлена в форме Лагранжа имеет вид

где – внутренняя точка минимального отрезка, содержащего узлы интерполированияи точку.

Многочлен Ньютона с конечными разностями

Рассмотрим случай равноотстоящих узлов интерполяции, т. е. – называется шагом.

Введем понятие конечных разностей. Пусть известны значения функции в узлах . Составим разности значений функции:

Эти разности называются разностями первого порядка.

Можно составить разности второго порядка:

Аналогично составляются разности k-го порядка:

Выразим конечные разности непосредственно через значение функции:

Таким образом, для любого k можно записать:

Запишем эту формулу для значений разности в узле :

Используя конечные разности, можно определить

Перейдем к построению интерполяционного многочлена Ньютона. Этот многочлен будем искать в виде

График многочлена должен проходить через заданные узлы, то есть . Используем эти условия для нахождения коэффициентов многочлена:

Найдем отсюда коэффициенты :

Таким образом, для любого -го коэффициента формула примет вид

.

Подставляя эти формулы в выражение многочлена Ньютона, получим его следующий вид:

Полученную формулу можно записать в другом виде. Для этого введем переменную .

В этом случае

С учетом этих соотношений формулу многочлена Ньютона можно записать в виде

Полученное выражение может аппроксимировать данную функцию на всем отрезке изменения аргумента. Однако более целесообразно (с точки зрения повышения точности расчетов и уменьшения числа слагаемых в полученой формуле) ограничиться случаем, то есть использовать эту формулу для всех. Для других случаев вместопринять, еслипри. В этом случае интерполяционный многочлен можно записать в виде

Полученная формула называется первым интерполяционным многочленом Ньютона для интерполяции вперед. Эту интерполяционную формулу обычно используют для вычисления значений функции в точках левой половины рассматриваемого отрезка. Это объясняется следующим: разности вычисляются через значения функции, причем. Из-за этого при больших значенияхмы не можем вычислить высших порядков.

Для правой половины рассматриваемого отрезка разности лучше вычислять справа налево. В этом случае , то есть, и интерполяционный многочлен Ньютона можно получить в виде:

Полученная формула называется вторым интерполяционным многочленом назад.

Пример. Используя интерполяционный полином Ньютона, вычислить , где функциязадана таблицей

Решение. Составляем таблицу конечных разностей.

Для вычисления положим в интерполяционном многочлене Ньютона впередтогдаи

Пример. Задана таблица. Найти .

При вычислении положим

.

При вычислении положим

.

Оценим погрешности формул Ньютона вперед и назад:

Формулы приближенного дифференцирования основаны на первой интерполяционной формуле Ньютона. Интерполяционный многочлен Ньютона имеет вид

Производя перемножение биномов, получим

так как , то

Аналогично можно вычислять производные функции любого порядка.

В некоторых случаях требуется находить производные функций в основных табличных точках. Так как табличное значение можно считать за начальное, то положив, имеем

Для производной многочлена Ньютона первого порядка погрешность может быть вычислена по формуле ,

где – число конечных разностей в многочлене Ньютона.

Пример. Найти функции, заданной таблично.

Решение.

Вычисляя погрешность, получим:

.

Действительно, .

Таким образом, результаты совпадают до четвертого знака.

Выборка экспериментальных данных представляет собой массив данных, который характеризует процесс изменения измеряемого сигнала в течение заданного времени (либо относительно другой переменной). Для выполнения теоретического анализа измеряемого сигнала необходимо найти аппроксимирующую функцию, которая свяжет дискретный набор экспериментальных данных с непрерывной функцией - интерполяционным полиномом n -степени. Одним из способов представления данного интерполяционного полинома n-степени может быть использован многочлен в форме Лагранжа.

Интерполяционный многочлен в форме Лагранжа – это математическая функция позволяющая записать полином n -степени, который будет соединять все заданные точки из набора значений, полученных опытным путём или методом случайной выборки в различные моменты времени с непостоянным временным шагом измерений.

1. Интерполяционная формула Лагранжа

В общем виде интерполяционный многочлен в форме Лагранжа записывается в следующем виде:

где ˗ степень полинома ;

˗ значение значения интерполирующей функции в точке ;

˗ базисные полиномы (множитель Лагранжа), которые определяются по формуле:

Так, например, интерполяционный многочлен в форме Лагранжа, проходящий через три заданных точки , будет записываться в следующем виде:

Многочлен в форме Лагранжа в явном виде содержит значения функций в узлах интерполяции, поэтому он удобен, когда значения функций меняются, а узлы интерполяции неизменны. Число арифметических операции, необходимых для построения многочлена Лагранжа, пропорционально и является наименьшим для всех форм записи. К недостаткам этой формы записи можно отнести то, что при построении полинома степени n+1 полностью теряется информация о предыдущем полиноме степени n, т.е. с изменением числа узлов приходится все вычисление выполнить заново.

2. Погрешность интерполяционного полинома в форме Лагранжа

Рассмотрим функцию f (x ), которая непрерывна и дифференцируема на рассматриваемом отрезке . Интерполяционный полином L (x) в форме Лагранжа принимает в точках заданные значения функции . В остальных точках интерполяционный полином L (x) отличается от значения функции f (x ) на величину остаточного члена , который определяет абсолютную погрешность интерполяционной формулы Лагранжа:

А бсолютную погрешность интерполяционной формулы Лагранжа определяют следующим образом:

где n ˗ степень полинома

Переменная представляет собой верхнюю границу значения модуля (n +1)-й производной функции f(x) на заданном интервале

Погрешность интерполяции методом Лагранжа зависит от свойств функции f (x ), а также от расположения узлов интерполяции и точки x . В случае если погрешность не достигает нужной точности, то нужно разбить отрезок на части и интерполировать каждую часть в отдельности – кусочная интерполяция.

Выбор узлов интерполяции

С помощью корректного выбора узлов можно минимизировать значение в оценке погрешности, тем самым повысить точность интерполяции. Данная задача может быть решена с помощью многочлена Чебышева:


В качестве узлов следует взять корни этого многочлена, то есть точки:

3. Методика вычисления полинома в форме Лагранжа

Алгоритм вычисления полинома в форме Лагранжа позволяет разделить задачи определения коэффициентов и вычисления значений полинома при различных значениях аргумента:

1. В качестве исходных данных задается выборка из n -точек, которая включает в себя значения функции и значения аргумента функции.

2. Выполняется вычисление полинома n-степени в форме Лагранжа по следующей формуле:

Алгоритм вычисления полинома в форме Лагранжа представлен на рисунке 1.

Методика вычисления полинома в форме Лагранжа

Будем строить интерполяционный полином в виде

где – многочлены степени не выше п, обладающие следующим свойством:

Действительно, в этом случае полином (4.9) в каждом узле x j , j=0,1,…n , равен соответствующему значению функции y j , т.е. является интерполяционным.

Построим такие многочлены. Поскольку при x=x 0 ,x 1 ,…x i -1 ,x i +1 ,…x n , можно следующим образом разложить на множители

где с – постоянная. Из условия получим, что

Интерполяционный полином (4.1), записанный в форме

называют интерполяционным полиномом Лагранжа.

Приближенное значение функции в точке x * , вычисленное с помощью полинома Лагранжа, будет иметь остаточную погрешность (4.8). Если значения функции y i в узлах интерполирования x i заданы приближенно с одинаковой абсолютной погрешностью , то вместо точного значения будет вычислено приближенное значение , причем

где – вычислительная абсолютная погрешность интерполяционного полинома Лагранжа. Окончательно имеем следующую оценку полной погрешности приближенного значения .

В частности, полиномы Лагранжа первой и второй степени будут иметь вид

а их полные погрешности в точке x *

Существуют другие формы записи того же интерполяционного полинома (4.1), например, рассматриваемая далее интерполяционная формула Ньютона с разделенными разностями и ее варианты. При точных вычислениях значения Рn(х *) , получаемые по различным интерполяционным формулам, построенным по одним и тем же узлам, совпадают. Наличие же вычислительной погрешности приводит к различию получаемых по этим формулам значений. Запись многочлена в форме Лагранжа приводит, как правило, к меньшей вычислительной погрешности .

Использование формул для оценки погрешностей, возникающих при интерполировании, зависит от постановки задачи. Например, если известно количество узлов, а функция задана с достаточно большим количеством верных знаков, то можно поставить задачу вычисления f(x *) с максимально возможной точностью. Если, наоборот, количество верных знаков небольшое, а количество узлов велико, то можно поставить задачу вычисления f(x *) с точностью, которую допускает табличное значение функции, причем для решения этой задачи может потребоваться как разрежение, так и уплотнение таблицы.

§4.3. Разделенные разности и их свойства.

Понятие разделенной разности является обобщенным понятием производной. Пусть в точках x 0 , x 1 ,…x n заданы значения функций f(x 0), f(x 1),…,f(x n) . Разделенные разности первого порядка определяются равенствами

разделенные разности второго порядка – равенствами,



а разделенные разности k -го порядка определяются следующей рекуррентной формулой:

Разделенные разности обычно помещаются в таблицу следующего вида:

х i f(х i) Разделенные разности
I порядка II порядка III порядка IV порядка
х 0 y 0
f
х 1 y 1 f
f f
х 2 y 2 f f
f f
х 3 y 3 f
f
х 4 y 4

Рассмотрим следующие свойства разделенных разностей.

1. Разделенные разности всех порядков являются линейными комбинациями значений f(x i) , т.е. имеет место следующая формула:

Докажем справедливость этой формулы индукцией по порядку разностей. Для разностей первого порядка

Формула (4.12) справедлива. Предположим теперь, что она справедлива для всех разностей порядка .

Тогда, согласно (4.11) и (4.12) для разностей порядка k=п+1 имеем

Слагаемые, содержащие f(x 0) и f(x n +1) , имеют требуемый вид. Рассмотрим слагаемые, содержащие f(x i) , i=1, 2, …,n . Таких слагаемых два - из первой и второй сумм:

т.е. формула (4.12) справедлива для разности порядка k=п+1 , доказательство закончено.

2. Разделенная разность есть симметрическая функция своих аргументов x 0 , x 1 ,…x n (т.е. не меняется при любой их перестановке):

Это свойство непосредственно следует из равенства (4.12).

3. Простую связь разделенной разности f и производной f (n) (x) дает следующая теорема.

Пусть узлы x 0 , x 1 ,…x n принадлежат отрезку и функция f(x) имеет на этом отрезке непрерывную производную порядка п . Тогда существует такая точка , что

Докажем сначала справедливость соотношения

Согласно (4.12) выражение в квадратных скобках есть

f .

Из сравнения (4.14) с выражением (4.7) для остаточного члена R n (x)=f(x)-L n (x) получим (4.13), теорема доказана.

Из этой теоремы вытекает простое следствие. Для полинома п -ой степени

f(x) = a 0 x n +a 1 x n -1 +…a n

производная порядка п , очевидно, есть

и соотношение (4.13) дает для разделенной разности значение

Итак, у всякого многочлена степени п разделенные разности порядка п равны постоянной величине – коэффициенту при старшей степени многочлена. Разделенные разности высших порядков
(больше п ), очевидно, равны нулю. Однако этот вывод справедлив лишь в случае отсутствия вычислительной погрешности у разделенных разностей.

§4.4. Интерполяционный полином Ньютона с разделенными разностями

Запишем интерполяционный полином Лагранжа в следующем виде:

где L 0 (x) = f(x 0)=y 0 , а L k (x) – интерполяционный полином Лагранжа степени k , построенный по узлам x 0 , x 1 , …,x k . Тогда есть полином степени k , корнями которого являются точки x 0 , x 1 , …,x k -1 . Следовательно, его можно разложить на множители

где A k – постоянная.

В соответствии с (4.14) получим

Сравнивая (4.16) и (4.17) получим, что и (4.15) примет вид

который носит название интерполяционного полинома Ньютона с разделенными разностями.

Этот вид записи интерполяционного полинома более нагляден (добавлению одного узла соответствует появление одного слагаемого) и позволяет лучше проследить аналогию проводимых построений с основными построениями математического анализа.

Остаточная погрешность интерполяционного полинома Ньютона выражается формулой (4.8), но ее, с учетом (4.13), можно записать и в другой форме

т.е. остаточная погрешность может быть оценена модулем первого отброшенного слагаемого в полиноме N n (x *).

Вычислительная погрешность N n (x *) определится погрешностями разделенных разностей. Узлы интерполяции, лежащие ближе всего к интерполируемому значению x * , окажут большее влияние на интерполяционный полином, лежащие дальше – меньшее. Поэтому целесообразно, если это возможно, за x 0 и x 1 взять ближайшие к x * узлы интерполирования и произвести сначала линейную интерполяцию по этим узлам. Затем постепенно привлекать следующие узлы так, чтобы они возможно симметричнее располагались относительно x * , пока очередной член по модулю не будет меньше абсолютной погрешности входящей в него разделенной разности.

Loading...Loading...