Чем связано появление чисел. Возникновение чисел

Работу выполнила: Кожина Анна 5 класс Руководитель: Попкова Наталья Григорьевна учитель математики П. Большая Ижора 2013 год

Можно ли представить мир без чисел?

Число одно из основных понятий математики, позволяющее выразить результаты счета или измерения.

Люди так часто пользуются числами и счетом, что трудно даже представить себе, что они существовали не всегда, а были изобретены человеком.

Скачать:

Предварительный просмотр:

Секция: математика

МОУ Большеижорская СОШ

Тема проекта:

История возникновения чисел

Работу выполнила:

Кожина Анна 5 класс

Руководитель:

Попкова Наталья Григорьевна

учитель математики

П. Большая Ижора

2013 год

  1. Введение стр. 3
  2. Как появились цифры и числа стр. 4
  3. Арифметика каменного века стр. 6
  4. Числа начинают получать имена стр. 8
  5. Римские цифры стр. 10
  6. Цифры русского народа стр. 12
  7. Самые натуральные числа стр. 14
  8. Системы счисления стр. 15
  9. Заключение стр. 18
  10. Литература стр. 19

Введение

Можно ли представить мир без чисел?

Число одно из основных понятий математики, позволяющее выразить результаты счета или измерения.

Люди так часто пользуются числами и счетом, что трудно даже представить себе, что они существовали не всегда, а были изобретены человеком.

Цель:

доказать, что числа появились в давние времена.

Задачи:

1.установить где, когда и кем были придуманы первые числа;

2. выявить какие бывают системы счисления;

3. научиться изображать цифры теми способами, которыми пользовались наши предки.

Актуальность темы:

без знания прошлого нельзя понять настоящее.

Кто хочет ограничиться настоящим,

без знания прошлого,

тот никогда его не поймет…

Г.В.Лейбниц

В повседневной жизни нас повсюду окружают числа, поэтому интересно выяснить, когда появились первые числа, историю их развития.

  1. Как появились цифры и числа

Ученые считают, что числа зародилась еще в доисторические времена, когда человек научился считать предметы. Но знаки для обозначения чисел появились значительно позже: их изобрели шумеры - народ, живший в 3000-2000 гг. до н. э. в Месопотамии (ныне в Ираке).

История гласит, что на табличках из глины они выдавливали клинообразные черточки, а потом изобрели знаки. Некоторые клинописные знаки обозначали числа 1, 10, 100, то есть были цифрами, остальные числа записывались посредством соединения этих знаков.

Пользование цифрами облегчало счет: считали дни недели, головы скота, размеры земельных участков, объемы урожая. Вавилоняне , пришедшие в Месопотамию после шумеров, унаследовали многие достижения шумерской цивилизации - сохранились клинописные таблички с переводом одних единиц измерения в другие.

Пользовались цифрами и древние египтяне – об этом свидетельствует математический папирус Ринда , названный по имени английского египтолога, который приобрел его в 1858 г. в египетском городе Луксоре .

На папирусе записаны 84 математические задачи с решениями. Судя по историческому документу, египтяне пользовались такой системой цифр, в которой число обозначалось суммой значений цифр . Для обозначения некоторых чисел (1, 10, 100 и т. д.) возник отдельный иероглиф . При записи какого-то числа эти иероглифы писали столько раз, сколько в этом числе единиц соответствующего разряда.

Сходная система счисления была у римлян ; она оказалась одной из самых долговечных: иногда ею пользуются и сейчас.

У ряда народов (древние греки, финикийцы) цифрами служили буквы алфавита .

История гласит, что прообразы современных арабских цифр появились в Индии не позже V в.

Но индийские цифры в X-XIII вв. попали в Европу благодаря арабам, отсюда и возникло название - «арабские».

Большая заслуга в распространении и возникновении индийских цифр в арабском мире принадлежала трудам двух математиков: среднеазиатского ученого Хо- резми (ок. 780-ок. 850) и араба Кинди (ок. 800- ок. 870). Хорезми , живший в Багдаде, написал арифметический трактат об индийских цифрах, который стал известен в Европе в переводе итальянского математика Леонардо Пизанского (Фибоначчи). Текст Фибоначчи сыграл решающую роль в том, что арабо-индийская система записи чисел укоренилась на Западе .

В этой системе значение цифры зависит от ее положения в записи (так, в числе 151 цифра 1 слева имеет значение 100, а справа – 1).

Арабское название нуля – сифр – стало словом «цифра». Широкое распространение в Европе арабские цифры получили со второй половины XVв.

  1. Арифметика каменного века


Древние люди добывали себе пищу главным образом охотой. Чтобы добыча не ушла, её надо было окружить, ну вот хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счёта никак не обойдёшься! И вождь первобытного племени справлялся с этой задачей. Даже в те времена, когда человек не знал таких слов, как «пять» или «семь», он мог показать числа на пальцах рук.
Есть и сейчас на земле племена, которые при счёте не могут обойтись без помощи пальцев. Вместо числа пять они говорят «рука», десять – «две руки», а двадцать – «весь человек», - тут уж присчитываются и пальцы ног.
Пять - рука; Шесть - один на другой руке; Семь - два на другой руке; Десять - две руки, полчеловека; Пятнадцать - нога; Шестнадцать - один на другой ноге; Двадцать - один человек; Двадцать два - два на руке другого человека; Сорок - два человека; Пятьдесят три - три на первой ноге у третьего человека.
Раньше люди чтобы пересчитать стадо из 128 оленей должны были взять семь человек.
Так люди начинали считать, пользуясь тем, что им дала сама природа – собственной пятернёй. Часто говорят: «Знаю, как свои пять пальцев». Не с того ли времени пошло это выражение, когда знать, что пальцев пять, значило то же, что уметь считать?

Несколько десятков лет назад ученые-археологи обнаружили стойбище древних людей. В нем они нашли волчью кость, на которой 30 тысяч лет тому назад какой-то древний охотник нанес пятьдесят пять зарубок. Видно было, что, делая эти зарубки, он считал по пальцам. Узор на кости состоял из одиннадцати групп, по пять зарубок в каждой. При этом первые пять групп он отделил от остальных длинной чертой.

Много тысячелетий прошло с того времени. Но и сейчас швейцарские крестьяне, отправляя молоко на сыроварню, отмечают число фляг такими зарубками.

Первыми понятиями математики были "меньше", "больше" и "столько же". Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания . Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.

И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки - по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы - он пас и коров, и коз, и ослов. Поэтому пришлось делать из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать.

  1. Числа начинают получать имена

Перекладывать каждый раз глиняные фигурки с места на место было довольно утомительным занятием. Да и при обмене рыб на каменные ножи или антилоп на каменные топоры удобнее было сначала пересчитывать товары, а уж потом приступать к обмену. Но прошло много тысячелетий, прежде чем люди научились пересчитывать предметы. Для этого им пришлось придумать названия для чисел.

Недаром ведь говорят: "Без названия нет знания".

О том, как появились имена у чисел, ученые узнают, изучая языки разных племен и народов. Например, у нивхов , живущих на Сахалине и в низовьях Амура, числительные зависят от того, какие предметы считают. Важную роль играет форма предмета, по-нивхски в сочетаниях "два яйца", "два камня", "два одеяла", "два глаза" и т. д. числительные различны. Одному русскому "два" у них соответствует несколько десятков различных слов. Много различных слов для одного и того же числительного применяют некоторые негритянские племена и племена, живущие на островах Тихого океана.

И должно было пройти много столетий, а может быть и тысячелетий, прежде чем одни и те же числительные стали применять к предметам любого вида. Вот тогда и появились общие названия у чисел.

Ученые считают, что сначала названия получили только числа 1 и 2. По радио и по телевидению часто можно услышать: "...исполняет солист Большого театра..." Слово "солист" означает "певец, музыкант или танцор, который выступает один". А происходит оно от латинского слова "солюс" - один. Да и русское слово "солнце" похоже на слово "солист".

Разгадка очень проста: когда римляне придумывали имя числу 1, они исходили из того, что Солнце на небе всегда одно .

Название числа 2 во многих языках связано с предметами, встречающимися попарно , крыльями, ушами и т. д.

Но бывало, что числам 1 и 2 давали иные имена. Иногда их связывали с местоимениями "я" и "ты", а были языки, где "один" звучало, как "мужчина", "два" - как "женщина".

У некоторых племен еще совсем недавно не было других числительных, кроме "один" и "два". А все, что шло после двух, называлось "много ". Но потом понадобилось называть и другие числа. Ведь и собак у охотника, и стрел у него, и овец у пастуха может быть больше, чем две.

И тут придумали замечательный выход: числа стали называть, повторяя названия для единиц и двоек.

Позднее другие племена дали особое имя числительному, которое мы называем " три ". А так как они до того считали "один", "два", "много", то это новое числительное стали применять вместо слова "много".

И сейчас мать, рассердившись на непослушного сына, говорит ему:

"Что я, три раза должна повторять одно и то же!"

Русская пословица говорит: "Обещанного три года ждут".

В сказках герой идет искать Кощея Бессмертного "за тридевять земель".

Число " четыре " встречается в сказках куда реже. Но о том, что и оно когда-то играло особую роль, видно из русской грамматики. Вслушайтесь, как мы говорим: "Одна лошадь, две лошади, три лошади, четыре лошади". Казалось бы, все хорошо: после единственного числа идет множественное. Но, начиная с пяти, мы говорим: "пять лошадей, шесть лошадей и т. д.", и будь их хоть миллион, а все равно "лошадей". Значит, когда-то за числом "четыре" в русском языке начиналась необозримая область "много".

  1. Римские цифры

Римские цифры - цифры, использовавшиеся древними римлянами в своей непозиционной системе счисления.

Натуральные числа записываются при помощи повторения этих цифр. Если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая - перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры.

Римская (буквенная) система нумерации появилась примерно в 500 году до нашей эры у этрусков . Просуществовала она много столетий, прежде чем в средние века была заменена на привычную нам систему, взятую у арабов.
Римские нумерация оперирует только целыми числами.

В настоящее время она иногда применяется в часах, на памятниках, в книжном издательстве, в титрах некоторых американских фильмов.
Система эта довольно проста и основывается на применении 7 букв латинского алфавита:
I - 1
V - 5
X - 10
L - 50
C - 100
D - 500
M = 1000

Сначала пишутся тысячи и сотни, а затем - десятки и единицы.

Есть и некоторые правила.

Если большая цифра стоит перед меньшей, то они складываются (принцип сложения).

Если же меньшая цифра - перед большей, то меньшая вычитается из большей (принцип вычитания).

Одна черта сверху означает умножение всего числа на 1000. Но в типографии черта сверху применяется редко из-за сложности набора.

Примеры:

Число 26 = XXVI
Число 1987 = MCMLXXXVII

Чтобы лучше запомнить буквы в римских цифрах в русском языке существует правило мнемоники , которое звучит так:
М ы Д арим С очные Л имоны, Х ватит В сем И х.

Первые буквы в этой фразе (выделенные жирным) обозначают:

M, D, C, L, X, V, I

  1. Цифры русского народа

Цифры (позднелат. cifra, от араб. сифр - нуль, буквально - пустой; арабы этим словом называли знак отсутствия разряда в числе) условные знаки для обозначения чисел. Наиболее ранней и вместе с тем примитивной является словесная запись чисел, в отдельных случаях сохранявшаяся довольно долго (например, некоторые математики Средней Азии и Ближнего Востока систематически употребляли словесную запись чисел в 10 в. и даже позже). С развитием общественно-хозяйственной жизни народов возникла потребность в создании более совершенных, чем словесная запись, обозначений чисел (у разных народов числовые знаки были различными) и в разработке принципов записи чисел - систем счисления.

Древнейшие известные нам цифры - цифры вавилонян и египтян. Вавилонские цифры (2-е тыс. до н. э. - начало н. э.) представляют собой клинописные знаки для чисел 1, 10, 100 (или только для 1 и 10), все остальные натуральные числа записываются посредством их соединения.

Прямой клин  (1) и лежащий клин (10). Эти народы использовали шестидесятеричную систему счисления, например число 23 изображали так:    Число 60 снова обозначалось знаком , например число 92 записывали так:  .

В египетской иероглифической нумерации (возникновение её относится к 2500-3000 до н. э.) существовали отдельные знаки для обозначения единиц десятичных разрядов (вплоть до 10 7 ). Позднее наряду с картинным иероглифическим письмом египтяне пользовались скорописным гиератическим письмом, в котором было больше знаков (для десятков и т.д.), а затем демотическим письмом (примерно с 8 в. до н. э.).

Нумерациями типа египетской иероглифической являются финикийская, сирийская, пальмирская, греческая, аттическая или геродианова. Возникновение аттической нумерации относится к 6 в. до н. э.: нумерация употреблялась в Аттике до 1 в. н. э., хотя в других греческих землях она была задолго до этого вытеснена более удобной алфавитной ионийской нумерацией, в которой единицы, десятки и сотни обозначались буквами алфавита. Все остальные числа до 999 - их соединением (первые записи чисел в этой нумерации относятся к 5 в. до н. э.). Алфавитное обозначение чисел существовало также и у др. народов; например у арабов, сирийцев, евреев, грузин, армян.

Старинная русская нумерация (возникшая около 10 в. и встречавшаяся до 16 в.) также была алфавитной с применением славянской азбуки кириллицы (реже - глаголицы). Наиболее долговечной из древних цифровых систем оказалась римская нумерация, возникшая у этрусков около 500 до н. э.: она употребляется иногда и в настоящее время.

Прообразы современных цифры (включая нуль) появились в Индии, вероятно, не позднее 5 в. н. э. Удобство записи чисел при помощи этих цифры в десятичной позиционной системе счисления обусловило их распространение из Индии в др. страны.

В Европу индийские цифры были занесены в 10-13 вв. арабами (отсюда и сохранившееся поныне их др. название - «арабские» цифры) и получили всеобщее распространение со 2-й половины 15 в.

Начертание индийских цифры претерпело со временем ряд крупных изменений; ранняя их история плохо изучена.

  1. Самые натуральные числа

Для счета предметов применяют натуральные числа.

Любое натуральное число можно записать с помощью десяти цифр: О, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Например: триста двадцать восемь - 328

Пятьдесят тысяч четыреста двадцать один - 50421

Такую запись чисел называют десятичной. Последовательность всех натуральных чисел называют натуральным рядом:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, ...

Самое маленькое натуральное число - единица (1). В натуральном ряду каждое следующее число на 1 больше предыдущего.

Натуральный ряд бесконечен, наибольшего числа в нем нет.

Значение цифры зависит от ее места в записи числа.

Например 375:

цифра 5 означает: 5 единиц, она на последнем месте в записи числа (в разряде единиц),

цифра 7 - десятки, она находится на предпоследнем месте (в разряде десятков),

цифра 3- сотни, она стоит на третьем месте от конца (в разряде сотен) и т. д.

Цифра 0 - означает отсутствие единиц данного разряда в десятичной записи числа. Она служит и для обозначения числа "нуль".

Это число означает "ни одного". Помните! Нуль не относят к натуральным числам.

Если запись натурального числа состоит из одного знака - одной цифры, то его называют однозначным.

Например, числа 1, 5, 8 - однозначные.

Если запись числа состоит из двух знаков - двух цифр, то его называют двузначным.

числа 14, 33, 28, 95 - двузначные,

числа 386, 555, 951 - трехзначные,

числа 1346, 5787, 9999 - четырехзначные и т. д.

  1. Системы счисления

Система счисления - символический метод записи чисел, представление чисел с помощью письменных знаков.
Для начала проведём границу между числом и цифрой:

Число - это некоторая абстрактная сущность для описания количества.

Цифры - это знаки, используемые для записи чисел.

Цифры бывают разные: самыми распространёнными являются арабские цифры, представляемые известными нам знаками от нуля (0) до девяти (9); менее распространены римские цифры, мы их можем иногда встретить на циферблате часов или в обозначении века (XIX век).

Итак:

  • число - это абстрактная мера количества;
  • цифра - это знак для записи числа.

Так как чисел гораздо больше чем цифр, то для записи числа обычно используется набор (комбинация) цифр.

Только для небольшого количества чисел - для самых малых по величине - бывает достаточно одной цифры.

Существует много способов записи чисел с помощью цифр. Каждый такой способ называется системой счисления .

Величина числа может зависеть от порядка цифр в записи, а может и не зависеть.

Это свойство определяется системой счисления и служит основанием для простейшей классификации таких систем.

Это позволяет все системы счисления разделить на три класса (группы):

  • позиционные;
  • непозиционные;
  • смешанные.

Позиционные системы счисления мы рассмотрим более подробно ниже.

Смешанные и непозиционные системы счисления.

Денежные знаки - это пример смешанной системы счисления.

Сейчас в России используются монеты и купюры следующих номиналов: 1 коп., 5 коп., 10 коп., 50 коп., 1 руб., 2 руб., 5 руб., 10 руб., 50 руб., 100 руб., 500 руб., 1000 руб. и 5000 руб.

Чтобы получить некоторую сумму в рублях, нам нужно использовать некоторое количество денежных знаков различного достоинства.

Предположим, что мы покупаем пылесос, который стоит 6379 руб.

Для покупки можно использовать шесть купюр по тысяче рублей, три купюры по сто рублей, одна пятидесятирублёвая купюра, две десятки, одна пятирублёвая монета и две монеты по два рубля.

Если мы запишем количество купюр или монет начиная с 1000 руб. и заканчивая одной копейкой, заменяя нулями пропущенные номиналы, то мы получим число 603121200000.

В непозиционных системах счисления величина числа не зависит от положения цифр в записи.

Если бы мы перемешали цифры в числе 603121200000, то мы бы не смогли понять, сколько стоит пылесос. Следовательно, такая запись относится к позиционным системам.

Если же к каждой цифре приписать знак номинала, то такие составные знаки (цифра+номинал) уже можно было бы перемешивать. То есть такая запись уже является непозиционной .

Примером «чисто» непозиционной системы счисления является римская система.

  1. Заключение

Из литературных источников, во-первых, я установила – как, когда, где и кем были придуманы цифры.

Во-вторых, выяснила, что мы пользуемся десятичной системой счета, потому что у нас десять пальцев. Система счета, которую мы используем сегодня, была изобретена в Индии 1000 лет назад. Арабские купцы распространили ее по всей Европе.

В-третьих, научилась изображать числа теми способами, которыми пользовались наши предки.

Теперь я могу записать свой день рождения так:

IX.X.MMI г. –римскими цифрами;

09.10.2001г. – современными цифрами.

Полученные знания я буду использовать на уроках математики и информатики. Планирую продолжить более детальное изучение истории развития чисел.

  1. Литература

1. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. – М.: Просвещение, 1989.

2. Н.Виленкин,В.Жохов. Математика, 5 класс: учебник/М: Мнемозина, 2004.

3. Математика: Учебник-собеседник для 5-6 классов средней школы / Шаврин Л.Н., Гейн А.Г., Коряков И.О., М.В. Волков М.В. – М.: Просвещение, 1989.

5. home-edu.ru›user/f/00000660/chisla/chisla-1.html

6. Энциклопедический словарь юного математика / Сост. Савин А.П. – М.: Педагогика, 1989.

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах – математики – немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного!

Древние люди не умели считать. Да и считать им было нечего, потому что предметов, которыми они пользовались – орудий труда, – было совсем немного: один топор, одно копье Постепенно количество вещей увеличивалось, обмен ими усложнялся и возникала потребность в счете. Издавна числа казались людям чем-то таинственным. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства

В наш скоростной быстролётный век – век большого изобилия информации, различных печатных изданий и виртуального мира трудно чем - либо удивить людей. Написать, создать что-либо, да так, чтобы интересно было читать! Итак

С самого раннего детства мы знакомимся с числами. А какие же бывают числа? На этот вопрос я попыталась ответить в своей работе. Моя работа можно - это мини-пособие для ознакомления с таким интересным понятием как «Числа». Возможно, не все подробно, но в своей работе я старалась затронуть все аспекты, связанные с выбранной темой. Этой работой могут воспользоваться те, кто хочет знать о математике больше, чем рядовой школьник.

История развития числа

На первых этапах существования человеческого общества числа служили для примитивного счета предметов, дней, шагов. В первобытном обществе человек нуждался лишь в нескольких первых числа. С развитием цивилизации ему потребовалось изобретать все больше числа, этот процесс продолжался на протяженности многих столетий и требовал напряженного интеллектуального труда. При обмене продуктами появилась необходимость сравнивать числа, возникли понятия больше, меньше, равно. На этом же этапе люди стали складывать числа, затем научились вычитать, делить, умножать. При делении двух натуральных чисел появились дроби, при вычитании – отрицательные числа.

Необходимость выполнять арифметические действия привела к понятию рациональных чисел. В IV в. до н. э. греческие математики открыли несоизмеримые отрезки, длины которых не выражались ни целым, ни дробным числом (например, длина диагонали квадрата со стороной, равной 1). Потребовалась не одна сотня лет, чтобы математики смогли выработать способ записи таких чисел в виде бесконечной непериодической десятичной дроби. Так появились иррациональные числа, которые вместе с рациональными назвали действительными числами.

Но затем выяснилось, что во множестве действительных чисел не имеют решения простейшие квадратные уравнения, например, х2 + 1 = 0. Математики пришли к необходимости расширить понятия числа, чтобы в новом множестве можно было всегда извлечь квадратный корень. Новое множество назвали множеством комплексных чисел, введя понятие мнимой единицы: i2 = – 1.

Выражение вида а + вi назвали комплексным числом. Долгое время многие ученые не признавали их за числа. Только после того, как нашли возможность представить мнимое число геометрически, так называемые мнимые числа получили свое место во множестве чисел.

N – натуральные числа.

Q – рациональные числа.

R – действительные числа.

Комплексными называются числа вида а + вi, где а и в – действительные числа, i – мнимая единица: i2 = – 1. а называется действительной частью, вi – мнимой частью комплексного числа.

Определение. Два комплексных числа называются равными, если равны их действительные части и коэффициенты при мнимых частях, т. е. а + вi = с + di a = c, b = d.

Для комплексных чисел не существует соотношений «больше», «меньше».

Учёные математики, которые внесли

Вклад в развитие теории чисел

Мы живем в мире больших чисел

Задумывались ли вы когда-нибудь о том, сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:

1000 единиц – просто тысяча (1000 или 1 тыс.)

1000 тысяч – 1 миллион

1000 миллионов – 1 биллион (или 1 миллиард)

1000 биллионов – 1 триллион

1000 триллионов – 1 квадриллион

1000 квадриллионов – 1 квинтиллион

1000 квинтиллионов – 1 секстиллион

1000 секстиллионов – 1 септиллион

1000 нониллионов – 1 дециллион и т. д.

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 * 11= 33 нулями. 1. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000.

«Напрасно думают, что ноль играет маленькую роль»

Самуил Яковлевич Маршак

Степень числа – произведение его самого на себя требуемое число раз, которое называется показателем степени (а само число – ее основанием). Например, 3 * 3= 32 (здесь 3 – основание, 2- показатель степени), 2 * 2 * 2= 23, 10 * 10= 102=100, 105= 10 * 10 * 10 * 10 * 10= 100000.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

101=10, 102 =100, 103 =1000 и т. д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а0 =1). При записи больших чисел часто используют степень числа 10.

Единица – 100=1

Тысяча – 103= 1000

Миллион – 106= 1000 000

Биллион – 109= 1000 000 000

Триллион – 1012=1000 000 000 000

Квадриллион – 1015 =1000 000 000 000 000

Квинтиллион – 1018 =1000 000 000 000 000 000

Секстиллион – 1021 = 1000 000 000 000 000 000 000

Септиллион – 1024 = 1000 000 000 000 000 000 000 000

Октиллион - 1027 = 1000 000 000 000 000 000 000 000 000

Теперь приведем несколько интересных сведений:

Радиус Земли – 6400 км.

Длина Земного экватора – около 40 тыс. км.

Площадь Земного шара 510 млн. км.

Среднее расстояние от Земли до Солнца – 150 млн. км.

Диаметр нашей Галактики – 85 тыс. световых лет.

С начала нашей эры прошло немногим более миллиарда секунд.

Число Шахерезады

Существуют числа, носящие имена великих математиков: число Архимеда - , Неперово число – основание натуральных логарифмов е=2, 718281 [Непер Джон (150-1617), шотландский математик, изобретатель логарифмов].

Число, о котором пойдет речь, не менее популярно. Это 1001. Его иногда называют числом Шехерезады, известно каждому, кто читал сказки «Тысяча и одна ночь». Число 1001 обладает рядом интересных свойств:

1. Это самое маленькое натуральное четырехзначное число, которое можно представить в виде суммы кубов двух натуральных чисел: 1001=103+13.

2. Состоит из 77 «злополучных чертовых дюжин». (1001=77*13), из 91 одиннадцатки или 143 семерок (вспомним, что число «7» считалось магическим числом); далее, если будем считать, что год равен 52 неделям, то 1001=143*7=(104+26+13)*7=2 года + ½ года+ ¼ года

3. На свойствах числа 1001 базируется метод определения делимости числа на 7, на 11 и на 13.

Рассмотрим этот метод на примерах:

Делится ли на 7 число 348285?

348285=348*1000+285=348*1000+348-348+285=348*1001-(348-285)

Так как 1001 делится на 7, то чтобы 348285 делилось на 7, достаточно, чтобы на 7 делилась разность 348-285. Так как 348-285=63, то 348285 делится на 7.

Таким образом, чтобы узнать, делится ли число на 7 (на 11 или 13), необходимо от этого числа без последних трех цифр отнять число из трех последних цифр; если эта разность делится на 7 (11 или 13), то и заданное число также делится на 7 (11 или 13).

Задумайтесь, может и вы найдёте сказочное число. Внесите свой вклад в царицу наук - МАТЕМАТИКУ!!!

Взаимно- обратные числа

Обратное число́ (обратное значение, обратная величина) - это число, на которое надо умножить данное число, чтобы получить единицу. Два таких числа называются взаимно обратными.

Примеры: 5 и 1/5, −6/7 и −7/6, π и 1 / π

Для всякого числа а, не равного нулю, существует обратное 1/a.

На земном шаре обитают птицы – безошибочные составители прогноза погоды на лето. Название этих птиц зашифровано примерами, записанными на доске. Последовательно решив примеры и заменив ответы буквами, вы прочтёте название птиц – метеорологов.

1. 17/8 5/6 6/5;

2. 3,4 7/3 3/7;

3. 11/12 5,6 12/11;

4. 2,5 0,4 3;

5. 2/3 0,1 3/2;

6. 41/2 1/2 2;

8. 11/12 31/3 12/11.

17/8 31/3 0,1 3,4 3 41/2 5,6 1

ф о и л м н а г

Простые числа

«Простые числа остаются всегда готовыми ускользнуть от исследования»

Если записать натуральные числа в ряд, и в тех местах, где стоят простые числа, зажечь фонарики, то не нашлось в этом ряду места, где была бы сплошная темнота. Фонарики расположились бы очень причудливо. Между ними есть только одно число - четное, это 2, а остальные нечетные. 2 и 3 последовательные натуральные числа, наименьшие простые -такая пара единственная, где одно число четное, а другое нечетное.

1, 2, 3,4 ,5 ,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Два последовательных нечетных числа, каждое из которых является простым – называются числами – близнецами.

Первые простые числа-близнецы:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61),

(71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),

(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),

(641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Греческий ученый Евклид в своей книге «Начала» утверждал следующее: «Самого большого числа не существует». До сих пор неизвестно, есть ли самые большие числа-близнецы. И до сих пор нет ответа на вопрос: существует ли бесконечно много пар простых чисел-близнецов.

Первым глубокие исследования о том, как разбросаны простые числа среди натуральных, получил русский математик Пафнутий Львович Чебышев. Но до сих пор математики не знают формулы, с помощью которой можно получить простые числа одно за другим, нет даже формулы, дающей только простые числа.

Над тем, как составить список простых чисел, задумался живущей в 3 веке до нашей эры александрийский ученый Эратосфен. Его имя вошло в науку в связи с методом отыскания простых чисел. В древности писали на восковых табличках острой палочкой-стилем, поэтому Эратосфен «выкалывал» составные числа острым концом стиля. После выкалывания всех составных чисел таблица напоминала решето. Отсюда и название «решето Эратосфена». Древнегреческих ученых заинтересовало: сколько может быть всех простых чисел в натуральном ряду.

В 1750 году Леонард Эймер установил, что число 231 – 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 году французский математик Лукас установил, что огромное число

2127 – 1 = 170. 141. 183. 460. 469. 231. 731. 678. 303. 715. 884. 105. 727 также простое. Оно содержит 39 цифр. Для его вычисления были использованы механические настольные счетные машины. В 1957 году было найдено следующее простое число: 23217- 1. А простое число 244497-1 состоит из 13000 цифр.

Рациональные числа

Рациональное число (лат. ratio - отношение, деление, дробь) - число, представляемое обыкновенной дробью, где m - целое число, а n - натуральное число. При этом число m называется числителем, а число n - знаменателем дроби. Такую дробь следует интуитивно понимать, как результат деления m на n, даже если нацело разделить не удаётся. В реальной жизни можно использовать рациональные числа для счёта частей некоторых целых, но делимых объектов, например, тортов или других продуктов, разрезаемых на несколько частей перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Совершенные числа

Совершенное число́ (др. греч. ἀριθμὸς τέλειος) - натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8128, пятое - 33 550 336, шестое - 8 589 869 056 (последовательность A000396 в OEIS).

«Перестаньте отыскивать интересные числа!

Оставьте для интереса хотя бы одно неинтересное число!»

Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток?

Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2n-1(2n-1) - четное и совершенное, если число 2n-1 - простое 1. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 263 зерен, а всего на шахматной доске окажется «кучка» из 264-1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества.

Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2n-1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т. е. соответствующие им числа 2n-1 составные.)

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+ Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены.

От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Дружественные числа

Дружественные числа - два натуральных числа́, для которых сумма всех собственных делителей первого числа́ равна второму числу и сумма всех собственных делителей второго числа́ равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе.

Ниже приведены пары дружественных чисел, меньших 130 000.

6. 10744 и 10856

7. 12285 и 14595

8. 17296 и 18416

9. 63020 и 76084

10. 66928 и 66992

11. 67095 и 71145

12. 69615 и 87633

13. 79750 и 88730

14. 100485 и 124155

15. 122265 и 139815

16. 122368 и 123152

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился;

С нею пять лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил,

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Сколько лет прожил Диофант?

Фигурные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить таким прямоугольником, и только простые числа не могут быть "прямоугольными". А что если складывать треугольник? Треугольник получается из трех камушков: два в нижнем ряду, один в верхнем, в ложбинке, образованной двумя нижними камнями. Если добавить камень в нижний ряд, появится еще одна ложбинка; заполнив ее, мы получим ложбинку, образованную двумя камушками второго ряда; положив в нее камень, мы наконец получим треугольник. Итак, нам пришлось добавить три камушка. Следующий треугольник получится, если добавить четыре камушка. Выходит, что на каждом шаге мы добавляем столько камней, сколько их становится в нижнем ряду. Если теперь считать, что один камень - это тоже треугольник, самый маленький, у нас получится такая последовательность чисел: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д. Итак, фигурные числа - это общее название чисел, геометрическое представление которых связано с той или иной геометрической фигурой. Числа древними греками, а вместе с ними Пифагором и пифагорейцами мыслились зримо, в виде камешков, разложенных на песке или на счетной доске - абаке.

По этой причине греки не знали нуля, т. к. его невозможно было "увидеть". Но и единица еще не была полноправным числом, а представлялась как некий "числовой атом", из которого образовывались все числа Пифагорейцы называли единицу "границей между числом и частями", т. е. между целыми числами и дробями, но в то же время видели в ней "семя и вечный корень". Число же определялось как множество, составленное из единиц. Особое положение единицы как "числового атома", роднило ее с точкой, считавшейся "геометрическим атомом". Вот почему Аристотель писал: "Точка есть единица, имеющая положение, единица есть точка без положения". Т. о. пифагорейские числа в современной терминологии - это натуральные числа. Числа камешки раскладывались в виде правильных геометрических фигур, эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Древние греки, когда им приходилось умножать числа, рисовали прямоугольники; результатом умножения трех на пять был прямоугольник со сторонами три и пять. Это - развитие счета на камушках. Множество закономерностей, возникающих при действиях с числами, были обнаружены древнегреческими учеными при изучений чертежей. И долгие века лучшим подтверждением справедливости таких соотношений считался способ геометрический, с прямоугольниками, квадратами, пирамидами и кубами. В V - IV веках до нашей эры ученые, комбинируя натуральные числа, составляли из них затейливые ряды, придавая элементам этих рядов то или иное геометрическое истолкование. С их помощью можно выложить правильные геометрические фигуры: треугольники, квадраты, пирамиды и т. д. Увлеклись, причем независимо друг от друга, нахождением таких чисел Б. Паскаль и П. Ферма.

Даже в XVII века, когда была уже хорошо развита алгебра с обозначениями величин буквами, со знаками действий, многие считали ее варварской наукой, пригодной для низменных целей- бытовых расчетов, вспомогательных вычислений, - но никак не для благородных научных трудов. Один из крупнейших математиков того времени, Бонавентура Кавальери, пользовался алгеброй, ибо вычислять с ее помощью проще, но для обоснования своих научных результатов все алгебраические выкладки заменял рассуждениями с геометрическими фигурами.

Среди фигурных чисел различают: Линейные числа (т. е. простые числа) - числа, которые делятся только на единицу и на самих себя и, следовательно, представимы в виде последовательности точек, выстроенных в линию: (линейное число 5)

Плоские числа - числа, представимые в виде произведения двух сомножителей: (плоское число 6)

Телесные числа, выражаемые произведением трех сомножителей: (телесное число 8)

Треугольные числа: (треугольные числа 3,6,10)

Квадратные числа: (квадратные числа 4,9,16)

Пятиугольные числа:(пятиугольные числа 5,12)

Именно от фигурных числе пошло выражение "Возвести число в квадрат или куб".

Представление чисел в виде правильных геометрических фигур помогало пифагорейцам находить различные числовые закономерности. Например, чтобы получить общее выражение для n-угольного числа, которое есть не что иное, как сумма n натуральных чисел 1+2+3+. +n, достаточно дополнить это число до прямоугольного числа n(n+1) и увидеть (именно глазами!) равенство

Написав последовательность квадратных чисел, опять-таки легко увидеть глазами выражение для суммы n нечетных чисел:

Наконец, разбивая n-е пятиугольное число на три (n-1) треугольных (после чего остается ещё n "камешков"), легко найти его общее выражение

Разбиением на треугольные числа получается и общая формула для n-го k-угольного числа:

При k=3 мы получаем треугольные числа, а k=4 - квадратные числа и т. д.

Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис.), а для числа 13 - лишь расположив все предметы в одну линию. Такое древние не считали прямоугольным.

Таким образом, прямоугольными числами являются все составные числа, а не прямоугольными - простые числа. Фигурное представление чисел помогало пифагорейцам открывать законы арифметических операций, а также легко переходить к числовой характеристике геометрических объектов - измерению площадей и объемов.

Так, представляя число 10 в двух формах: 5*2=2*5, легко "увидеть" переместительный закон умножения: a*b=b*a. В том же числе 10: (2+3)*2=2*2+3*2=10 можно "разглядеть" и распределительный закон сложения относительно умножения: (a+b)c=ac+bc.

Наконец, если "камешки", образующие фигурные числа, мыслить в виде равных по площади квадратиков, то, укладывая их в прямоугольное число ab:. автоматически получаем формулу для вычисления площади прямоугольника: S=ab. К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки.

Нетрудно заметить, что пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид:

«Числовые забавы »

Это число, прежде всего, замечательно тем, что определяет число дней в не високосном году. При делении на 7 оно даёт в остатке 1, эта особенность числа 365 имеет большое значение для нашего семидневного календаря.

Существует ещё одна особенность числа 365:

365=10×10×11×11×12×12, то есть 365 равно в сумме квадратов трёх последовательных чисел, начиная с 10:

10²+11²+12²=100+121+144=365.

Но и это ещё не всё. Число 365 равно сумме квадратов двух следующих чисел, 13 и 14:

13²+14²=169+196=365.

Если человек не знает выше изложенных свойств числа 365, то он при решении примера:

10²+11²+12²+13²+14²

365 начнёт выполнять громоздкие вычисления.

Например:

10²+11²+12²+13²+14² ‗ 100+121+144+169+196 ‗ 221+313+196 ‗ 730

Человек же знающий решит этот пример в уме моментально и получит в ответе 2.

10²+11²+12²+13²+14² ‗ 365+365 ‗ 730

Следующее число, которое я буду описывать – это 999.

Оно намного удивительнее, чем его перевёрнутое изображение – 666 –«звериное число»

Апокалипсиса, вселяющее страх в суеверных людей, но оно по своим арифметическим свойствам ничем не выделяется среди других чисел.

Особенность числа 999 в том, что его можно легко умножить на трёхзначные числа. Тогда получится шестизначное произведение: первые три цифры его есть умножаемое число, уменьшенное на единицу, а остальные три цифры являются дополнениями первых трех до 9. Например,

Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:

573×999=573×(1000-1)= 573

Зная эту особенность, мы можем мгновенно умножить любое трёхзначное число на 999.

Например:

947×999=946053, 509×999=508491, 981×999=980019,

543×999=542457, 167×999=166833, 952×999=951048 и т. п.

А так как 999=9×111=3×3×3×37,то вы можете описать целые столбцы шестизначных чисел, кратных 37. Не знакомый же со свойствами числа 999, этого сделать не сможет.

1. Число 1001

Сначала рассмотрим число 1001. Это число сказок, которое царица Шехерезада рассказывала царю Шахрияру.

Число 1001 с первого взгляда кажется самым обыкновенным. Его можно разложить на три последовательных простых множителя 7, 11 и 13. Следовательно, оно является их произведением.

Но в том, что 1001=7×11×13 нет ничего интересного. Замечательно то, что если его умножить на любое трехзначное число, то в результате получится тоже самое число, записанное дважды. Нужно применить распределительный закон умножения.

Разложим 1001 на сумму 1000+1.

Например:

247×1001=247×(1000+1)=247×1000+247×1=247000+247=247247

Число 111111

Следующее число, о котором я хочу рассказать – это 111 111.

Благодаря знакомству со свойствами числа 1001 мы сразу видим, что

111 111=111×1001

Но мы знаем, что

111=3×37, 1001=7×11×13.

Отсюда следует, что наша новая числовая диковинка, состоящая из одних единиц, представляет собой произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число, 111 111.

3×(7×11×13×37)=3×37037=111 111

7×(3×11×13×37)=7×15873=111 111

11×(3×7×13×37)=11×10101=111 111

13×(3×7×11×37)=13×8547=111 111

37×(3×7×11×13)=37×3003=111 111

(3×7)×(11×13×37)=21×5291=111 111

(3×11)×(7×13×37)=33×3367=111 111

(3×13)×(7×11×37)=39×2849=111 111

(3×37)×(7×13×11)=111×1001=111 111

(7×3)×(11×13×37)=21×5291=111 111

(7×11)×(3×13×37)=77×1443=111 111

(7×13)×(11×3×37)=91×1221=111 111

(7×37)×(11×3×13)=259×429=111 111

(11×13)×(7×37×3)=143×777=111 111

(37×11)×(13×7×3)=407×273=111 111

«Фокус с числом»

Арифметические фокусы – честные, добросовестные фокусы. Здесь никто никого не стремится обмануть, ввести транс или усыпить внимание зрителя. Чтобы выполнить такой фокус, не нужны, ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие – либо другие артистические способности, требующие иногда многолетних упражнений. Кружок товарищей, не посвящённых в математические тайны можно поразить следующими фокусами.

Фокус № 1.

Запишите число 365 два раза: 365 365.

Разделите полученное число на 5: 365 365÷5=73 0 73.

Разделите полученное частное на 73: 73 0 73÷73=1001.

У вас получится число Шехерезады, то есть 1001.

Разгадка фокуса, очень проста: число 365=5×73. То есть число 365365 мы делим на 365 и получаем в ответе 1001.

Фокус № 2.

Пусть кто-нибудь напишет любое трехзначное число, и затем к нему припишет еще раз это же самое число. Получится шестизначное число, состоящее из повторяющихся цифр.

Предложите своему товарищу разделить это число в тайне от вас на 7. Результат нужно передать соседу, который должен разделить его на 11. Полученный результат передается следующему ученику, которого вы просите разделить это число на 13.

Результат третьего деления вы, не глядя, вручаете первому товарищу. Это и есть задуманное число.

Этот фокус объясняется очень просто. Если приписать к трехзначному числу его само – значит умножить его на 1001, или на произведение 7×11×13=1001. Шестизначное число, которое ваш товарищ получит после того, как припишет к заданному числу его само, должно будет делиться без остатка и на 7, и на 11, и на 13.

Фокус № 3.

Запишите любую цифру три раза подряд. Полученное число разделите на 37 и на 3. И у вас получится в ответе ваша цифра.

Разгадка: когда мы делим трехзначное число, записанное тремя одинаковыми цифрами вначале на 37, а затем на 3,то мы, не замечая, делим на 111.

Фокус № 4.

Число 111 111 так же можно использовать для проделывания фокусов, как и число 1001. В данном случае надо предлагать товарищу число однозначное, и попросить записать его уже шесть раз подряд. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. п. Это дает возможность очень разнообразить выполнение фокуса.

Например: предложите своим товарищам задумать любую цифру, кроме нуля. Нужно умножить ее на 37. Затем умножить на 3. Результат приписать еще раз справа. Полученное число разделить на первоначально задуманную цифру.

Получилось число 111 111.

Разгадка фокуса основана на свойстве числа 111 111. Когда мы умножаем его на 1001 (со свойствами числа 1001 мы познакомились в предыдущей главе) и получилось задуманное число, записанное в начале. Далее при делении на задуманное число явно получается шесть единиц.

Фокус № 5.

Пусть ваш товарищ запишет любое трехзначное число. Справа к нему нужно приписать три нуля. От шестизначного числа предложите отнять первоначальное трехзначное. Затем попросите товарища разделить на задуманное, полученный результат. Частное нужно разделить на 37.

Получилось число 27.

Секрет фокуса понять просто. Он основан на свойствах числа 999.

Число 999 является произведением четырех простых множителей:

3×3×3×37=999, а, следовательно, 999÷37=27

Когда умножают на него трехзначное число, получается результат, состоящий из двух половин: первая – это умножаемое число, уменьшенное на единицу, а вторая – результат вычитания первой половины из множителя.

Фокус № 6.

Число 111 111 111: можно также использовать для наших числовых фокусов:

Спросим у одноклассника его любимую цифру (от 1 до 9).

Попросим эту цифру умножить на 9, а затем полученное произведение умножить на число 123456789. В результате получится число, состоящее из любимых цифр одноклассника.

Например:

5 – это любимая цифра ученика, тогда

45×123456789=555 555 555 т. е. 9×123456789=111 111 111

Заключение

Я думаю, что моя работа является мини-пособием для изучения числового разнообразия. Интересные способы вычисления чисел очень могут помочь в школе, в вузе, на работе, и вообще в жизни. Так в кругу товарищей можно загадывать интересные арифметические фокусы без обманов и волшебства. Исходя из всего вышесказанного, я делаю вывод, что эти и многие другие числовые диковинки желательно знать каждому. Эти знания обязательно понадобятся в жизни!

Я. Линский

Древние народы тех времен, когда изобретали цифры, не оставили нам книг, по которым мы могли бы установить, какова была наука в те далекие времена. Но даже из того, что было в те времена записано или изображено, не все дошло до нас и не все разгадано в тех надписях, которые сохранились до нашего времени.
Мы изучаем древние сказания и предания. Некоторые из этих преданий впоследствии были записаны первыми древними историками. Так, историк Плиний записал, будто римский царь Нума велел воздвигнуть статую двуликому Янусу так, чтобы пальцы Януса указывали 365 – число дней года. Двуликий Янус был римский бог. Его именем был назван первый месяц года январь. Изображали Януса с двумя лицами, которые смотрели в противоположные стороны – в прошлое и в будущее. Но все же римляне считали, что у Януса, как у любого бога или человека, только 20 пальцев на руках и ногах. И такая запись древнего историка говорит нам, что по пальцам умели считать не только до двадцати.
Отсчитывать большие числа пальцами умели не только римляне, но и другие народы.
О происхождении цифр мы узнаем и по языку разных народов. Так мы узнали, что понятие "два" в Китае обозначают словом "уши", а в Тибете – словом "крылья". В Квинслэнде, в Австралии, туземцы вместо "четыре" говорили "бурла-бурла", что означает "два-два". Вместо слова "считать" мы иногда употребляем иностранное слово "калькулировать". Происходит это слово от римского слова "калькуль", что означает камешек. Таким образом само слово подтверждает, что древние римляне вели счёт камушками.
Интересно наблюдать, как считают первобытные племена. По таким наблюдениям установлено, что некоторые племена умели считать только до трех, а после трех говорили "много".
Племя янкусов на Амазонке понятие 3 передавало словом "поеттаррарориккоароак", а чтобы сосчитать шесть, им нужно два раза произнести это "коротенькое" слово. Представляем себе, сколько раз им надо произнести "поеттаррарориккоароак", чтобы досчитать до ста.
Некоторые племена индейцев считали так: один человек отсчитывал по пальцам до десяти, потом звали другого человека, который загибал один палец для первого десятка, второй палец, когда первый человек второй раз загнул свои 10 пальцев. Так продолжался счет до сотни. Сотни уже считал по своим пальцам третий индеец, тысячи – четвертый и так далее. Зулусы устраивались проще: отсчитывали по пальцам десять и хлопали в ладоши один раз, отсчитывали второй десяток и хлопали два раза. Семь хлопков и восемь растопыренных пальцев обозначали 78. Проще-то это проще, но и сбиться со счета легче. Не всегда запомнишь, сколько раз отхлопал.

СЧЕТ ПО-КИТАЙСКИ

По этому рисунку видно, как китайцы досчитывали на пальцах до десятков миллионов.

Огромного искусства в счете на пальцах достигли китайцы. Китайцы ухитрялись на одном пальце отсчитывать девять, на следующем пальце они отсчитывали десятки, на третьем – сотни, и таким образом на восьми пальцах они ухитрялись считать до 99 999 999.
Большие пальцы служили китайцам для того, чтобы на остальных своих длинных, тонких и гибких пальцах производить этот сложный счет. Китайские купцы торговались молча на глазах у всех, но никто из окружающих не мог узнать, за какую цену товар куплен. Купцы брали друг друга за руку под полой своих длинных халатов и показывали цену прикосновением к пальцам. Многие исследователи утверждают, что обычай хлопать друг друга по рукам под полой кафтана при продаже товара перешел к русским купцам из Китая.
– Ну, по рукам?
– По рукам! – говорили русские – и дело считалось решенным. Так говорим мы теперь при случае. Хлопать по рукам русские купцы научились, но считать по пальцам до таких больших чисел не умели.
С китайцами больше всех сталкивались сибирские звероловы. Но короткие пальцы на широких руках сибирских охотников давали им возможность нащупать толстым пальцам только два сустава на остальных своих пальцах. Таким образом сибиряки отсчитывали на правой руке до восьми и загибали один палец левой руки, а когда загнут все пять пальцев левой руки, значит отсчитали до сорока. Этим и объясняют, почему сорок стало единицей счета у русских. В пуде считали 40 фунтов. В старых описаниях Москвы говорится, что церквей было выстроено "сорок сороков". В древних летописях сказано, что дань (ясак) уплачивалась "сороками соболей".
Так пальцы на руках, а у некоторых народов и пальцы ног, были одной из первых широко распространенных счетных машин. Приспособлением для счета у многих народов служили камешки, зерна кукурузы, раковины и т. п. Жители островов в Южном океане счет вели кокосовыми орехами. Отсчитывали десять орехов и откладывали маленький кусочек ореха. Этими кусочками обозначали десятки. Насчитают десять маленьких кусочков и отложат кусок побольше, он обозначал сотни и т. д.

Но уже давно были и специальные приспособления для счета. Самым распространенным приспособлением для счета у народов, которые уже достигли известной степени культуры, был абак.


Песочный абак. В первой строке греческими знаками написано число 2 014 103, во второй – римскими – 350 627, в третьей – арабскими – 7 013 094.

До сих пор не удалось точно установить, когда абак появился впервые. Некоторые ученые говорят, что слово "абак" произошло от слова, которое у семитических народов означает пыль, прах, песок. Другие ученые производят слово "абак" от греческого слова "доска, стол". И, действительно, судя по описаниям, существовали различные абаки. Некоторые абаки состояли ид доски, покрытой цветным песком и разделенной на столбцы вертикальными полосами. На таком абаке можно было записывать числа и стирать написанное, как на грифельной доске.
Другой вид абака состоял из простой доски, разделенной на столбцы. Первый столбец обозначал единицы, второй – десятки, третий – сотни и т. д. Древний историк Геродот писал, что египтяне считают камешками, ведя рукой справа налево, а эллины (греки) водили рукой слева направо.

Абак с камешками. У греков это расположение камешков обозначало 2 130 210, у египтян – 120 312.

Один и тот же камешек можно положить в первый столбец – тогда он обозначает единицу, и в шестой столбец – тогда он обозначает сотню тысяч. У греков было изречение, которое приписывают древнему мудрецу Солону.

Абак с колышками.

Оно говорит, что человек, который дружит с тиранами, подобен камешку при вычислении, значение его бывает иной раз большое, иной – малое.
Постепенно абак совершенствовался. В 1846 году при раскопках на острове Саламине был найден большой мраморный абак. Этот абак был длиной в 160 и шириной в 70 сантиметров. В абаке этом были отдельные столбцы для счета целых чисел и отдельные для дробей.

Абак с марками, дающими число 5 507 020.

Были абаки с колышками, на которые надевались кружочки. Такой абак не найден, но, по описанию древних историков, мы его можем себе представить.
Римляне делали абаки с прорезями, в которых двигались пуговки. Такой абак похож на китайский, который назывался "суанпан". Китайцы делали свой абак из рамки, на которой были натянуты нитки с пуговками. Наши счеты, вероятнее всего, заимствованы у китайцев.
Постепенно вместо камешков, пуговок и гладких жетонов на абак стали класть марки, на которых были написаны цифры.

КАК ИЗМЕНИЛИСЬ ЦИФРЫ


Изображение римских цифр связано со счетом по пальцам.

Какие же цифры существовали у древних народов?
Нам известно, что китайцы знали цифры еще за 4500 лет до наших дней. Эти цифры состояли из горизонтальных и вертикальных палочек, а десять китайцы изображали кружочком, вроде нашего нуля. Но китайцы жили обособленно и можно утверждать, что их цифры не были переняты другими народами.


Арабские цифры, составленные из отдельных палочек.

У халдеев, которые жили по рекам Тигру и Евфрату, цифры были похожи на клинья. Их выдавливали на глиняных плитках.
У греков, евреев, славян цифрами служили буквы, расположенные в алфавитном порядке.
У римлян были уже цифры. Цифр у них было всего семь. Нужные им числа римляне изображали путем комбинации этих семи цифр. При этом они пользовались и сложением и вычитанием. Например "XI" у римлян обозначало "11", а если палочка стояла слева – "IX", читали "9", т. е. цифра "10" уменьшалась на единицу.
Самое изображение римских цифр, бесспорно, связано со счетом по пальцам.
Родина наших цифр – Индия. Некоторые исследователи пытаются доказать, что изображение наших цифр произошло от расположения черточек. Одной чертой изображали единицу, в следующих цифрах было столько черточек, сколько в этих цифрах содержалось единиц.
По мнению этих исследователей, постепенно для ускорения письма из этих отдельных черточек вырисовывались наши современные цифры. Однако эти предположения не имеют никаких доказательств.


Так можно начертить все цифры по одной фигуре.

Интересно, что происхождение цифр занимало и Пушкина. В его дневнике мы находим такую запись:
"Форма цифр арабских составлена из следующей фигуры: АД = 1
ЕАВДС = 2
АВЕСД = 3
АВД + АЕ = 4
и проч. римские цифры составлены по тому же образцу".


Изменения арабских цифр за семнадцать веков до 14 века нашей эры.

До нас дошли изображения цифр, которые употреблялись в разное время индусами и арабами.
Как видите, наши цифры изменялись, и только в 14 веке нашей эры они стали такими, какими мы их знаем сегодня. Наши цифры носят название арабских. С этими цифрами, заимствованными у индусов, большинство европейских и азиатских народов познакомилось через арабов, которые вели торговлю с этими народами.

Мы не можем точно установить, как произошли наши цифры. Точно не знаем мы, почему ноль стали изображать кружком. Возможно, в древности на абак клали кружки и, когда стали считать на бумаге, пустой кружок обратился в кружок, нарисованный на бумаге – ноль (0). А некоторые ученые предполагают, что кружочек ноля разросся и округлился из точки, которую раньше индусы ставили вместо ноля. В любом случае, изобретение ноля было очень важно для развития счета.

История возникновения чисел очень глубокая и давняя. Сама жизнь привела людей к тому, что стало просто необходимо использовать символы для написания чисел.

Представьте, ведь давным-давно во времена, когда у людей не было цифр и они не умели считать как мы сейчас, у них все-равно возникало огромное количество поводов для счета. Правда, в те времена им не нужно было применять огромные числа. И самый простой вариант счета подсказала природа. Люди использовали пальцы рук, а при больших числах и ног, чтобы посчитать, например, количество голов скота в стаде. Если уж своих пальцев не хватало, звали приятеля, чтобы уже считать на его руках и ногах. Достаточно неудобно было, а вдруг никого рядом не окажется когда срочно нужно посчитать большое количество чего-нибудь?

История чисел

Потом кто-то придумал делать глиняные кружочки для подсчета. Например, повел пастух с утра большое стадо на пастбище. Подсчитал всех животных с помощью кружков - сколько кружков, столько животных. Вечером привел их домой, опять смотрит, чтобы каждому животному соответствовал один кружок. Ну и подобных вариантов существовало множество, то есть пользовались подручными средствами.

Первое доказательство использования древними людьми счета - это волчья кость, на которой 30 тысяч лет назад сделали зарубки. Притом они набиты не как-нибудь, а сгруппированы по пять.

Древность.

В Древности у разных народов существовали свои способы счета. Например, майа использовали только три обозначения: точку, линию и эллипс и записывали ими любые цифры.

В Древнем Египте около 5000-4000 лет до н.э. использовали такую запись чисел: единица обозначалась палочкой, сотня - пальмовым листом, а сто тысяч - лягушкой (в дельте Нила было очень много лягушек, вот у людей и возникла такая ассоциация: сто тысяч - очень много, как лягушек в Ниле).

А вот наши предки-славяне использовали самую сложную запись чисел. Они их записывали буквами, над которыми ставили специальный значок «титло», чтобы отличить, где написали буквы, а где цифры, и значков у них было аж 27.

А, например, папуасские племена имели только две цифры, один и два, и называли их «урапун» и «окоза» соответственно. А дальнейшие числа называли просто используя эти два. Например три у них - «окоза-урапун», а четыре - «окоза-окоза». Видимо, считать им особо нечего, поэтому больших чисел у них нет. А все, что больше шести-семи они называют «много». А сколько там «много» уже неизвестно!

Клинопись.

Но человечество развивалось, хозяйство увеличивалось, усложнялись и подсчеты. Появилась потребность в записи чисел. Ведь на память невозможно упомнить, сколько в стаде голов скота, сколько мешков пшеницы у тебя лежит, а сколько потратили, сколько посадили и какой собрали урожай. И вот примерно в V веке до нашей эры появились первые цифры.

Говорят, что первые числа изобрели шумеры, народ, живший на территории Южного Междуречья Тигра и Евфрата, современного Ирака примерно в IV-III тысячелетии до н.э. Шумеры, кстати, очень интересный народ. Огромное количество изобретений, известных сейчас, были впервые использованы ими. Например, обожженный кирпич, колесо.

Шумеры изобрели и так называемое клинописное письмо или клинопись. На глиняных табличках рисовались различные символы в виде клиньев. Цивилизация шумеров была очень развита для тех времен. В их города жили торговцы, ремесленники. Для счета применялись сначала глиняные фишки различной формы. Со временем на них стали делать пометки, которые обозначали количество и вид того, что считали. Например, две козы. Но два мешка писали совершенно по-другому. То есть они описывали количество конкретных объектов и не выделяли отдельно цифру.

После шумеров на этих землях обосновались вавилоняне. Они переняли систему счисления шумеров. Египтяне тоже пользовались похожей системой счета.

Но все-таки подобный способ записи чисел не идеален и с развитием человечества развивалась и запись чисел.

Римские цифры появились 500 лет до н.э. Римская система счисления была очень распространена в Европе и считалась на то время, пока не придумали арабские цифры, идеальной.

I- 1

V-5

X-10

L-50

C-100

D-500

M-1000

С небольшими числами она вполне удобна, но для записи больших чисел очень сложна. Еще один недостаток: невозможно письменно делать вычисления. Их можно сделать только в уме, что, естественно, может породить большое количество ошибок.

Сейчас римские цифры тоже применяют, например, в записи века, порядкового номера монарха и т.п.

В V веке в Индии появилась система записи, которую мы знаем как арабские цифры и активно используем сейчас. Это был набор из 9 цифр от 1 до 9. Каждая цифра записывалась так, чтобы ей соответствовало количество углов. Например, в цифре 1 - один угол, в цифре 2 - два угла, в цифре 3 - три. И так до 9. Нуля еще не существовало, он появился позже. Вместо него просто оставляли пустое место.

Далее произошло интересное: арабы переняли индийскую систему счисления и начали вовсю применять ее. В те времена мусульманский мир был очень развит, он имел очень тесные связи и с азиатской и европейской культурой и брал от них все самое совершенное и передовое на то время.

Математик Мухаммед Аль-Хорезми в IX веке составил руководство об индийской нумерации. Оно в XII веке попало в Европу и эта система счисления получило очень широкое распространение. Интересно, но именно из-за того, что к нам эти цифры пришли от арабов, мы их называем арабскими, а не индийскими.

Кстати, и само слово «цифра» - арабского происхождения. Арабы перевели индийское «сунья» и получилось «цифр».

Арабская система счисления называется позиционной. Это значит, что значение числа зависит от положения его в записи. То есть в числе 18 цифра 8 обозначает 8 единиц, а в числе 87 та же восьмерка обозначает 8 десятков. Позиционные системы наиболее совершенны. Но они произошли от непозиционных систем (которые, в принципе, существуют и сейчас) в результате развития человечества, его знаний и потребностей.

Интересно то, что современные арабские цифры сильно отличаются от тех, которые используем мы:

Вот такая история чисел . Сейчас тоже используются разные числа. Некоторые страны, как например, арабские страны и Китай, пользуются своими особенными цифрами. Но, все-таки, наибольшее распространение получили арабские цифры, которые используют и понимают во всем мире.

Вам также может быть интересно.

Я узнал что первое доказательство использования древними людьми счета - это волчья кость , на которой 30 тысяч лет назад сделали зарубки.


Значит, счет появился более 30 тысяч лет назад . Но цифр тогда еще не было. Просто каждому предмету соответствовала одна зарубка, одна черточка.

Если уж своих пальцев не хватало, звали приятеля, чтобы уже считать на его руках и ногах. Но такой способ был неудобен.

При ведении хозяйства, при общении с соплеменниками человек использовал пальцы рук , а иногда и ног, чтобы посчитать, например, количество голов скота в стаде, или показать, сколько мужчин пойдет сегодня на охоту.

Потом начали применять для счета подручные материалы (камушки, палочки… )
Цифры появились у разных народов в разное время.


Например, индейцы майя вместо цифр использовали только три обозначения: точку, линию и овал и записывали ими любые цифры.

В Древнем Египте около 7 тысяч лет назад использовали такую запись чисел: единица обозначалась палочкой, сотня - пальмовым листом.

А сто тысяч - обозначалось лягушкой (в дельте Нила было очень много лягушек, вот у людей и возникла такая ассоциация: сто тысяч - очень много, как лягушек в Ниле).

Римские цифры появились 2500 лет назад. С небольшими числами эта форма записи вполне удобна, но для записи больших чисел очень сложна. И с ними неудобно проводить вычисления. Сейчас римские цифры тоже применяют, например, в записи века, порядкового номера монарха и т.п.

Индейцы и народы Древней Азии при счете завязывали узелки на шнурках разной длины и цвета.


У некоторых богатеев скапливалось по несколько метров этой веревочной «счетной книги », попробуй, вспомни через год, что означают четыре узелочка на красном шнурочке! Поэтому того, кто завязывал узелки, называли вспоминателем.

В V веке в Индии появилась система записи чисел , которая является основой для современных цифр. Индия была оторвана от других стран, - на пути лежали тысячи километров расстояния и высокие горы.

Арабы были первыми «чужими », которые заимствовали цифры у индийцев и привезли их в Европу.


Поэтому считается, что современные привычные для нас цифры имеют арабское происхождение .

Арабы немного видоизменили индийскую систему записи цифр, приспособив к своему письму. Но с течением времени цифры видоизменялись.

Считается, что арабские математики для удобства решили привязать количество углов в записи цифры к его численному значению. Например, в цифре 1 - один угол, в цифре 2 - два угла, в цифре 3 - три. И так до 9. Нуля еще не существовало, он появился позже. Вместо него просто оставляли пустое место.

Привычные нам формы цифр, более округлые, потому что угловатые цифры писать долго и не очень удобно.

Но, я заметил, что угловатые цифры все же используются и в нашей жизни при написании индекса на конверте , цифр в электронных часах и калькуляторах .

Хотя они выглядят уже немного не так. Да и с развитием книгопечатания появилось много различных шрифтов как для букв, так и для цифр. Но в школах России учат писать всех детей одинаково.

Вот такая история цифр и чисел . Сейчас тоже используются разные числа. Некоторые страны, как например, арабские страны и Китай, пользуются своими особенными цифрами. Но, все-таки, наибольшее распространение получили арабские цифры, которые используют во всем мире.

Loading...Loading...