Таблица вытеснения металлов. Активные металлы. Ребятам раздаются памятки


Понятно, что ничего не понятно.

Разберем более подробно процессы, которые могут происходить при погружении металлической пластины в раствор соли того же металла, из которого изготовлена и сама пластина, которую, в подобных случаях называют электродом .

Возможны два варианта.

Вариант 1 . Электрод изготовлен из металла, являющегося активным восстановителем (ему не "жалко" отдавать свои электроны), пусть это будет, скажем, цинк.

После того, как цинковый электрод погружается в раствор, диполи воды, присутствующие в растворе, начинают притягивать к себе определенную часть атомов цинка, которые переходят в раствор в виде гидратированных ионов, но при этом оставляют свои электроны на поверхности электрода.

Me 0 +mH 2 O → Me n+ ·mH 2 O+ne - Me 0 → Me n+ +ne -

Постепенно на поверхности цинкового электрода накапливается все больше и больше "брошенных" отрицательных электронов, - цинковый электрод приобретает отрицательный заряд. Параллельно с этим процессом в растворе увеличивается количество положительно заряженных ионов цинка, которые покинули электрод. Катионы цинка начинают притягиваться отрицательно заряженным электродом, в результате чего на границе электрод-раствор образуется так называемый двойной электрический слой (ДЭС).

Вариант 2. Электрод изготовлен из металла, который является слабым восстановителем (ему "жалко" расставаться со своими электронами). Пускай роль такого металла играет медь. Таким образом, ионы меди, содержащиеся в растворе, являются сильными окислителями. При погружении медного электрода в раствор часть ионов меди начинает контактировать с поверхностью электрода и восстанавливается за счет свободных электронов, присутствующих в меди.

Me n+ +ne - → Me 0

Идет процесс, обратный Варианту 1. Постепенно все больше и больше катионов меди осаждаются на поверхности электрода. Восстанавливаясь, катионы заряжают медную пластину положительно, по мере увеличения заряда положительный медный электрод все больше и больше притягивает отрицательно заряженных ионов, таким образом, формируется двойной электрический слой, но обратной полярности, чем это было в Варианте 1.

Формируемая на границе электрод-раствор разность потенциалов, называется электродным потенциалом .

Измерить такой потенциал очень сложно. Чтобы выйти из трудного положения, решили брать не абсолютные значения, а относительные, при этом в качестве эталона решили взять потенциал водородного электрода, принятый равным нулю.

Потенциал конкретного металлического электрода зависит от природы металла, концентрации и температуры раствора.

Поскольку щелочные и щелочноземельные металлы в водных растворах реагируют с водой - их электродным потенциалы рассчитывают теоретически.

Все металлы принято располагать в порядке возрастания значения их стандартного электродного потенциала - такой ряд называется электрохимическим рядом напряжений металлов :

Что показывает электродный потенциал

Электродный потенциал отражает в численном значении способность металла отдавать свои электроны или восстанавливаться, говоря другими словами, отражает химическую активность металла.

Чем левее в электрохимическом ряду стоит металл (см. выше), тем он легче отдает свои электроны, т.е., является более активным, легче вступает в реакции с другими элементами.

Если брать крайности, то:

  • литий самый сильный восстановитель, а ион лития - самый слабый окислитель;
  • золото самый слабый восстановитель, а ион золота - самый сильный окислитель.

Следствия, вытекающие из электрохимического ряда напряжений металлов:

  • Металл вытесняет из солей все другие металлы, стоящее в ряду правее него (являющиеся более слабыми восстановителями);
  • Металлы, имеющие отрицательное значение электродного потенциала, т.е., стоящие левее водорода, вытесняют его из кислот;
  • Самые активные металлы, имеющие самые низкие значения электродного потенциала (это металлы от лития до натрия), в водных растворах в первую очередь реагируют с водой.

Следует обратить внимание, что положение металлов в Периодической таблице и положение этих же металлов в электрохимическом ряду напряжений немного отличаются. Данный факт объясняет тем, что значение электродного потенциала зависит не только от энергии, необходимой для отрыва электронов от изолированного атома, но сюда входит также еще и энергия, требуемая для разрушения кристаллической решетки + энергия, которая выделяется при гидратации ионов.

Разделы: Химия , Конкурс «Презентация к уроку»

Класс: 11

Презентация к уроку



















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи:

  • Обучающая: Рассмотрение химической активности металлов исходя из положения в периодической таблице Д.И. Менделеева и в электрохимическом ряду напряжения металлов.
  • Развивающая: Способствовать развитию слуховой памяти, умению сопоставлять информацию, логически мыслить и объяснять происходящие химические реакции.
  • Воспитательная: Формируем навык самостоятельной работы, умение аргументировано высказывать свое мнение и выслушивать одноклассников, воспитываем в ребятах чувство патриотизма и гордость за соотечественников.

Оборудование: ПК с медиапроектором, индивидуальные лаборатории с набором химических реактивов, модели кристаллических решеток металлов.

Тип урока : с применением технологии развития критического мышления.

Ход урока

I. Стадия вызов.

Актуализация знаний по теме, пробуждение познавательной активности.

Блеф-игра: «Верите ли Вы, что…». (Слайд 3)

  1. Металлы занимают верхний левый угол в ПСХЭ.
  2. В кристаллах атомы металла связаны металлической связью.
  3. Валентные электроны металлов крепко связаны с ядром.
  4. У металлов, стоящих в главных подгруппах (А), на внешнем уровне обычно 2 электрона.
  5. В группе сверху вниз происходит увеличение восстановительных свойств металлов.
  6. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в электрохимический ряд напряжения металлов.
  7. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в периодическую таблицу Д.И. Менделеева

Вопрос классу? Что обозначает запись? Ме 0 – ne —> Me +n (Слайд 4)

Ответ: Ме0 – является восстановителем, значит вступает во взаимодействие с окислителями. В качестве окислителей могут выступать:

  1. Простые вещества (+О 2 , Сl 2 , S…)
  2. Сложные вещества (Н 2 О, кислоты, растворы солей…)

II. Осмысление новой информации.

В качестве методического приема предлагается составление опорной схемы.

Вопрос классу? От каких факторов зависят восстановительные свойства металлов? (Слайд 5)

Ответ: От положения в периодической таблице Д.И.Менделеева или от положения в электрохимическом ряду напряжения металлов.

Учитель вводит понятия: химическая активность и электрохимическая активность .

Пред началом объяснения ребятам предлагается сравнить активность атомов К и Li поположению в периодической таблице Д.И. Менделеева и активность простых веществ, образованными данными элементами по положению в электрохимическом ряду напряжения металлов. (Слайд 6)

Возникает противоречие: В соответствии с положением щелочных металлов в ПСХЭ и согласно закономерностям изменения свойств элементов в подгруппе активность калия больше, чем лития. По положению в ряду напряжения наиболее активным является литий.

Новый материал. Учитель объясняет в чем отличие химической от электрохимической активности и объясняет, что электрохимический ряд напряжений отражает способность металла переходить в гидратированный ион, где мерой активности металла является энергия, которая складывается из трех слагаемых (энергии атомизации, энергии ионизации и энергии гидротации). Материал записываем в тетрадь. (Слайды 7-10)

Вместе записываем в тетрадь вывод: Чем меньше радиус иона, тем большее электрическое поле вокруг него создается, тем больше энергии выделяется при гидротации, следовательно более сильные восстановительные свойства у этого металла в реакциях.

Историческая справка: выступление ученика о создании Бекетовым вытеснительного ряда металлов. (Слайд 11)

Действие электрохимического ряда напряжения металлов ограничивается только реакциями металлов с растворами электролитов (кислот, солей).

Памятка:

  1. Уменьшаются восстановительные свойства металлов при реакциях в водных растворах в стандартных условиях (250°С, 1 атм.);
  2. Металл, стоящий левее, вытесняет металл, стоящий правее из их солей в растворе;
  3. Металлы, стоящие до водорода, вытесняют его из кислот в растворе (искл.: HNO3);
  4. Ме (до Al) + Н 2 О —> щелочь + Н 2
    Другие Ме (до Н 2) + Н 2 О —> оксид + Н 2 (жесткие условия)
    Ме (после Н 2) + Н 2 О —> не реагируют

(Слайд 12)

Ребятам раздаются памятки.

Практическая работа: «Взаимодействие металлов с растворами солей» (Слайд 13)

Осуществите переход:

  • CuSO 4 —> FeSO 4
  • CuSO 4 —> ZnSO 4

Демонстрация опыта взаимодействия меди и раствора нитрата ртути (II).

III. Рефлексия, размышление.

Повторяем: в каком случае пользуемся таблицей Менделеева, а в каком случае необходим ряд напряжение металлов. (Слайды 14-15) .

Возвращаемся к начальным вопросам урока. На экране высвечиваем вопрос 6 и 7. Анализируем какое высказывание не верное. На экране – ключ (проверка задания 1). (Слайд 16) .

Подводим итоги урока :

  • Что нового узнали?
  • В каком случае возможно пользоваться электрохимическим рядом напряжения металлов?

Домашнее задание : (Слайд 17)

  1. Повторить из курса физики понятие «ПОТЕНЦИАЛ»;
  2. Закончить уравнение реакции, написать уравнения электронного баланса: Сu + Hg(NO 3) 2 →
  3. Даны металлы (Fe, Mg, Pb, Cu) – предложите опыты, подтверждающие расположение данных металлов в электрохимическом ряду напряжения.

Оцениваем результаты за блеф-игру, работу у доски, устные ответы, сообщение, практическую работу.

Используемая литература:

  1. О.С. Габриэлян, Г.Г. Лысова, А.Г. Введенская «Настольная книга для учителя. Химия 11 класс, часть II» Издательство Дрофа.
  2. Н.Л. Глинка «Общая химия».

Металлы, легко вступающие в реакции, называются активными металлами. К ним относятся щелочные, щелочноземельные металлы и алюминий.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Наиболее активными считаются щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Свойства

Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

Основные химические свойства металлов представлены в таблице.

Реакция

Уравнение

Исключение

Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом

K + O 2 → KO 2

Литий реагирует с кислородом только при высокой температуре

Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются

2Ca + O 2 → 2CaO

Реагируют с простыми веществами, образуя соли

Ca + Br 2 → CaBr 2 ;
- 2Al + 3S → Al 2 S 3

Алюминий не вступает в реакцию с водородом

Бурно реагируют с водой, образуя щёлочи и водород


- Ca + 2H 2 O → Ca(OH) 2 + H 2

Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки

Реагируют с кислотами, образуя соли

Ca + 2HCl → CaCl 2 + H 2 ;

2K + 2HMnO 4 → 2KMnO 4 + H 2

Взаимодействуют с растворами солей, сначала реагируя с водой, а затем с солью

2Na + CuCl 2 + 2H 2 O:

2Na + 2H 2 O → 2NaOH + H 2 ;
- 2NaOH + CuCl 2 → Cu(OH) 2 ↓ + 2NaCl

Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей - минералов, горных пород.

Рис. 3. Минералы и чистые металлы.

Что мы узнали?

К активным металлам относятся элементы I и II групп - щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома - немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия - высокие температуры, разрушение оксидной плёнки.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 388.

Электрохимические системы

Общая характеристика

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.

Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о ).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Ряд стандартных электродных потенциалов (напряжений). Уравнение Нернста

Располагая металлы в порядке возрастания их стандартных электродных потенциалов, получают ряд напряжений Николая Николаевича Бекетова (1827-1911), или ряд стандартных электродных потенциалов. Числовые значения стандартных электродных потенциалов для ряда технически важных металлов приведены в таблице.

Ряд напряжений металлов

Ряд напряжений характеризует некоторые свойства металлов:

1. Чем меньшее значение имеет электродный потенциал металла, тем он химически активнее, легче окисляется и труднее восстанавливается из своих ионов. Активные металлы в природе существуют только в виде соединений Na, K, ..., встречаются в природе, как в виде соединений, так и в свободном состоянии Cu, Ag, Hg; Au, Pt - только в свободном состоянии;

2. Металлы, имеющие более отрицательный электродный потенциал, чем магний, вытесняют водород из воды;

3. Металлы, стоящие в ряду напряжений до водорода, вытесняют водород из растворов разбавленных кислот (анионы которых не проявляют окислительных свойств);

4. Каждый металл ряда, не разлагающий воду, вытесняет металлы, имеющие более положительные значения электродных потенциалов из растворов их солей;

5. Чем больше отличаются металлы значениями электродных потенциалов, тем большее значение э.д.с. будет иметь построенный из них гальванический элемент.

Зависимость величины электродного потенциала (Е) от природы металла, активности его ионов в растворе и температуры выражается уравнением Нернста

Е Ме = Е о Ме + RTln(a Ме n +)/nF,

где Е о Ме – стандартный электродный потенциал металла, a Me n + – активность ионов металла в растворе. При стандартной температуре 25 о С, для разбавленных растворов заменяя активность (а) концентрацией (с), натуральный логарифм десятичным и подставляя значения R , T и F, получим

Е Ме = Е о Ме + (0,059/n)lgс.

Например, для цинкового электрода, помещенного в раствор своей соли, концентрацию гидратированных ионов Zn 2+ × mH 2 O сокращенно обозначим Zn 2+ , тогда

Е Zn = Е о Zn + (0,059/n) lg[ Zn 2+ ].

Если = 1 моль/дм 3 , то Е Zn = Е о Zn .

Гальванические элементы, их электродвижущая сила

Два металла, погруженные в растворы своих солей, соединенные проводником, образуют гальванический элемент. Первый гальванический элемент был изобретен Александром Вольтом в 1800 г. Элемент состоял из медных и цинковых пластинок, разделенных сукном, смоченным раствором серной кислоты. При последовательном соединении большого числа пластинок элемент Вольта обладает значительной электродвижущей силой (э.д.с.).

Возникновение электрического тока в гальваническом элементе обусловлено разностью электродных потенциалов взятых металлов и сопровождается химическими превращениями, протекающими на электродах. Рассмотрим работу гальванического элемента на примере медно-цинкового элемента (Дж. Даниэля – Б.С. Якоби).

Схема медно-цинкового гальванического элемента Даниэля-Якоби

На цинковом электроде, опущенном в раствор сульфата цинка (с = 1 моль/дм 3), происходит окисление цинка (растворение цинка) Zn о - 2e = Zn 2+ . Электроны поступают во внешнюю цепь. Zn – источник электронов. Источник электронов принято считать отрицательным электродом – анодом. На электроде из меди, погруженном в раствор сульфата меди (с = 1 моль/дм 3) происходит восстановление ионов металла. Атомы меди осаждаются на электроде Cu 2+ + 2e = Cu о. Медный электрод положительный. Он является катодом. Одновременно часть ионов SO 4 2- переходят через солевой мостик в сосуд с раствором ZnSO 4 . Сложив уравнения процессов, протекающих на аноде и катоде, получим суммарное уравнение

Борис Семенович Якоби (Мориц Герман)(1801-1874)

или в молекулярной форме

Это обычная окислительно - восстановительная реакция, протекающая на границе металл-раствор. Электрическая энергия гальванического элемента получается за счёт химической реакции. Рассмотренный гальванический элемент можно записать в виде краткой электрохимической схемы

(-) Zn/Zn 2+ //Cu 2+ /Cu (+).

Необходимым условием работы гальванического элемента является разность потенциалов, она называется электродвижущей силой гальванического элемента (э.д.с.) . Э.д.с. всякого работающего гальванического элемента величина положительная. Для вычисления э.д.с. гальванического элемента надо из величины более положительного потенциала отнять величину менее положительного потенциала. Так э.д.с. медно–цинкового гальванического элемента при стандартных условиях (t = 25 о С, с = 1 моль/дм 3 , Р = 1 атм) равна разности между стандартными электродными потенциалами меди (катода) и цинка (анода), то есть

э.д.с. = Е о С u 2+ / Cu - Е o Zn 2+ / Zn = +0,34 В – (-0,76 В) = +1,10 В.

В паре с цинком ион Cu 2+ восстанавливается.

Необходимую для работы разность электродных потенциалов можно создать, используя один и тот же раствор разной концентрации и одинаковые электроды. Такой гальванический элемент называется концентрационным , а работает он за счет выравнивания концентраций раствора. Примером может служить элемент, составленный из двух водородных электродов

Pt, H 2 / H 2 SO 4 (с`) // H 2 SO 4 (с``) /H 2, Pt,

где с` = `; с`` = ``.

Если р = 101 кПа, с` < с``, то его э.д.с. при 25 о С определяется уравнением

Е = 0,059lg(с``/с`).

При с` = 1 моль-ион/дм 3 э.д.с. элемента определяется концентрацией водородных ионов во втором растворе, то есть Е = 0,059lgс`` = -0,059 pH.

Определение концентрации ионов водорода и, следовательно, рН среды измерением э.д.с. соответствующего гальванического элемента называется потенциометрией.

Аккумуляторы

Аккумуляторами называются гальванические элементы многоразового и обратимого действия. Они способны превращать накопленную химическую энергию в электрическую при разрядке, а электрическую в химическую, создавая запас ее в процессе зарядки. Так как э.д.с. аккумуляторов невелика, при эксплуатации их обычно соединяют в батареи.

Свинцовый аккумулятор . Свинцовый аккумулятор состоит из двух перфорированных свинцовых пластин, одна из которых (отрицательная) после зарядки содержит наполнитель - губчатый активный свинец, а другая (положительная) - диоксид свинца. Обе пластины погружены в 25 - 30 % раствор серной кислоты (рис. 35). Схема аккумулятора

(-) Pb/ p -p H 2 SO 4 / PbO 2 /Pb(+).

Перед зарядкой в поры свинцовых электродов вмазывается паста, содержащая помимо органического связующего оксид свинца PbO. В результате взаимодействия оксида свинца с серной кислотой в порах электродных пластин образуется сульфат свинца

PbО + H 2 SO 4 = PbSO 4 + H 2 O.

Аккумуляторы заряжают, пропуская электрический ток

Процесс разрядки

Суммарно процессы, происходящие при зарядке и разрядке аккумулятора, можно представить следующим образом

При зарядке аккумулятора плотность электролита (серной кислоты) увеличивается, а при разрядке уменьшается. По плотности электролита судят о степени разряженности аккумулятора. Э.д.с. свинцового аккумулятора 2,1 В.

Преимущества свинцового аккумулятора - большая электрическая емкость, устойчивость в работе, большое количество циклов (разрядка- зарядка). Недостатки - большая масса и, следовательно, малая удельная ёмкость, выделение водорода при зарядке, не герметичность при наличии концентрированного раствора серной кислоты. В этом отношении лучше щелочные аккумуляторы.

Щелочные аккумуляторы. К ним относятся кадмиево-никеливые и железо-никелиевые аккумуляторы Т. Эдисона.

Схемы аккумулятора Эдисона и свинцового аккумулятора

Томас Эдисон(1847-1931)

Они сходны между собой. Различие состоит в материале пластин отрицательного электрода. В первом случае они кадмиевые, во втором железные. Электролитом служит раствор КОН ω = 20 %. Наибольшее практическое значение имеют кадмиево-никелевые аккумуляторы. Схема кадмиево-никелевого аккумулятора

(-) Cd / раствор KOH /Ni 2 O 3 /Ni (+).

Работа кадмиевого-никелевого аккумулятора основана на окислительно-восстановительной реакции с участием Ni 3+

Э.д.с. заряженного кадмиево-никелевого аккумулятора составляет 1.4 В.

В таблице представлены характеристики аккумулятора Эдисона и свинцового аккумулятора.

Цель работы: ознакомиться на опыте с зависимостью окислительно-восстановительных свойств металлов от их положения в электрохимическом ряду напряжений.

Оборудование и реактивы: пробирки, держатели для пробирок, спиртовка, фильтровальная бумага, пипетки, 2н. растворы HCl и H 2 SO 4 , концентрированная H 2 SO 4 , разбавленная и концентрированная HNO 3 , 0,5М растворы CuSO 4 , Pb(NO 3) 2 или Pb(CH 3 COO) 2 ; кусочки металлических алюминия, цинка, железа, меди, олова, железные канцелярские скрепки, дистиллированная вода.

Теоретические пояснения

Химический характер какого-либо металла в значительной степени обусловлен тем, насколько он легко окисляется, т.е. насколько легко его атомы способны переходить в состояние положительных ионов.

Металлы, которые проявляют легкую способность окисляться, называются неблагородными. Металлы, которые окисляются с большим трудом, называются благородными.

Каждый металл характеризуется определенным значением стандартного электродного потенциала. За стандартный потенциал j 0 данного металлического электрода принимается ЭДС гальванического элемента, составленного из стандартного водородного электрода, расположенного слева, и пластинки металла, помещенной в раствор соли этого металла, причем активность (в разбавленных растворах можно использовать концентрацию) катионов металла в растворе должна бать равна 1 моль/л; Т=298 К; р=1 атм. (стандартные условия). Если условия реакции отличны от стандартных, нужно учитывать зависимость электродных потенциалов от концентраций (точнее активностей) ионов металлов в растворе и температуры.

Зависимость электродных потенциалов от концентрации выражается уравнением Нернста, которое применительно к системе:

Me n + + n e - Me

В ;

R – газовая постоянная, ;

F – постоянная Фарадея (»96500 Кл/моль );

n –

а Ме n + - моль/л .

Принимая значение Т =298К, получим

моль/л.

j 0 , отвечающих полуреакции восстановления, получают ряд напряжений металлов (ряд стандартных электродных потенциалов). В этот же ряд помещают стандартный электродный потенциал водорода, принимаемый за нуль, для системы, в которой протекает процесс:

2Н + +2е - = Н 2

При этом, стандартные электродные потенциалы неблагородных металлов имеют отрицательное значение, а благородных – положительное.

Электрохимический ряд напряжений металлов

Li; K; Ba; Sr; Ca; Na; Mg; Al; Mn; Zn; Cr; Fe; Cd; Co; Ni; Sn; Pb; ( H) ; Sb; Bi; Cu; Hg; Ag; Pd; Pt; Au

Этот ряд характеризует окислительно-восстановительную способность системы «металл – ион металла» в водных растворах при стандартных условиях. Чем левее в ряду напряжений стоит металл (чем меньше его j 0 ), тем более сильным восстановителем он является, и тем легче атомы металла отдают электроны, превращаясь в катионы, но катионы этого металла труднее присоединяют электроны, превращаясь в нейтральные атомы.

Окислительно-восстановительные реакции с участием металлов и их катионов идут в том направлении, при котором металл с меньшим электродным потенциалом является восстановителем (т.е. окисляется), а катионы металла с большим электродным потенциалом – окислителями (т.е. восстанавливаются). В связи с этим для электрохимического ряда напряжений металлов характерны следующие закономерности:

1. каждый металл вытесняет из раствора солей все другие металлы, стоящие правее его в электрохимическом ряду напряжений металлов.

2. все металлы, которые в электрохимическом ряду напряжений стоят левее водорода, вытесняют водород из разбавленных кислот.

Методика проведения опытов

Опыт 1: Взаимодействие металлов с соляной кислотой.

В четыре пробирки налить по 2 – 3 мл соляной кислоты и поместить в них по кусочку алюминия, цинка, железа и меди порознь. Какие из взятых металлов вытесняют водород из кислоты? Написать уравнения реакций.

Опыт 2: Взаимодействие металлов с серной кислотой.

В пробирку опустить кусочек железа и добавить 1 мл 2н. серной кислоты. Что наблюдается? Повторить опыт с кусочком меди. Протекает ли реакция?

Проверить действие концентрированной серной кислоты на железо и медь. Объяснить наблюдения. Написать все уравнения реакций.

Опыт 3: Взаимодействие меди с азотной кислотой.

Положить в две пробирки по кусочку меди. В одну из них налить 2 мл разбавленной азотной кислоты, во вторую – концентрированной. При необходимости содержимое пробирок подогреть на спиртовке. Какой газ образуется в первой пробирке, а какой во второй? Записать уравнения реакций.

Опыт 4: Взаимодействие металлов с солями.

Налить в пробирку 2 – 3 мл раствора сульфата меди (II) и опустить кусочек железной проволоки. Что происходит? Повторить опыт, заменив железную проволоку кусочком цинка. Написать уравнения реакций. Налить в пробирку 2 мл раствора ацетата или нитрата свинца (II) и опустить кусочек цинка. Что происходит? Написать уравнение реакции. Указать окислитель и восстановитель. Будет ли протекать реакция, если цинк заменить медью? Дать объяснение.

11.3 Необходимый уровень подготовки студентов

1. Знать понятие стандартного электродного потенциала, иметь представление о его измерении.

2. Уметь использовать уравнение Нернста для определения электродного потенциала в условиях, отличных от стандартных.

3. Знать, что такое ряд напряжений металлов, что он характеризует.

4. Уметь использовать ряд напряжений металлов для определения направления окислительно-восстановительных реакций с участием металлов и их катионов, а также металлов и кислот.

Задания для самоконтроля

1. Какая масса технического железа, содержащего 18% примесей, требуется для вытеснения из раствора сульфата никеля (II) 7,42 г никеля?

2. В раствор нитрата серебра опущена медная пластинка массой 28 г . по окончании реакции пластинка была вынута, обмыта, высушена и взвешена. Масса ее оказалась 32,52 г . Какая масса нитрата серебра была в растворе?

3. Определите значение электродного потенциала меди, погруженной в 0,0005 М раствор нитрата меди (II) .

4. Электродный потенциал цинка, погруженного в 0,2 М раствор ZnSO 4 , равен 0,8 В . определите кажущуюся степень диссоциации ZnSO 4 в растворе указанной концентрации.

5. Вычислите потенциал водородного электрода, если концентрация ионов водорода в растворе (Н +) составляет 3,8 10 -3 моль/л.

6. Вычислите потенциал железного электрода, опущенного в раствор, содержащий 0,0699 г FeCI 2 в 0,5 л.

7. Что называют стандартным электродным потенциалом металла? Каким уравнением выражается зависимость электродных потенциалов от концентрации?

Лабораторная работа № 12

Тема:Гальванический элемент

Цель работы: ознакомление на опыте с принципами работы гальванического элемента, овладение методикой расчета ЭДС гальванических элементов.

Оборудование и реактивы: медная и цинковая пластины, присоединенные к проводникам, медная и цинковая пластины, соединенные проводниками с медными пластинами, наждачная бумага, вольтметр, 3 химических стакана на 200-250 мл , мерный цилиндр, штатив с закрепленной в нем U - образной трубкой, солевой мост, 0,1 М растворы сульфата меди, сульфата цинка, сульфата натрия, 0,1 % раствор фенолфталеина в 50% этиловом спирте.

Теоретические пояснения

Гальванический элемент – это химический источник тока, то есть устройство, вырабатывающее электрическую энергию в результате прямого преобразования химической энергии окислительно-восстановительной реакции.

Электрический ток (направленное движение заряженных частиц) передается по проводникам тока, которые подразделяются на проводники первого и второго рода.

Проводники первого рода проводят электрический ток своими электронами (электронные проводники). К ним относятся все металлы и их сплавы, графит, уголь, а также некоторые твердые оксиды. Удельная электропроводность этих проводников находится в пределах от 10 2 до 10 6 Ом -1 см -1 (например, уголь – 200 Ом -1 см -1 , серебро 6 10 5 Ом -1 см -1 ).

Проводники второго рода проводят электрический ток своими ионами (ионные проводники). Они характеризуются низкой электропроводностью (например, Н 2 О – 4 10 -8 Ом -1 см -1 ).

При сочетании проводников первого и второго рода образуется электрод. Это чаще всего металл, опущенный в раствор собственной соли.

При погружении металлической пластинки в воду атомы металла, находящиеся в его поверхностном слое, под действием полярных молекул воды гидратируются. В результате гидратации и теплового движения связь их с кристаллической решеткой ослабляется и некоторое количество атомов, переходит в виде гидратированных ионов в слой жидкости, прилегающий к поверхности металла. Металлическая пластинка заряжается при этом отрицательно:

Ме + m Н 2 О = Ме n + n Н 2 О + ne -

Где Ме – атом металла; Ме n + n Н 2 О – гидратированный ион металла; e - – электрон, n – заряд иона металла.

Состояние равновесия зависит от активности металла и от концентрации его ионов в растворе. В случае активных металлов (Zn, Fe, Cd, Ni ) взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратированных ионов в раствор (рис. 1а ). Этот процесс является окислительным. По мере увеличения концентрации катионов у поверхности возрастает скорость обратного процесса – восстановления ионов металла. В конечном итоге скорости обоих процессов выравниваются, устанавливается равновесие, при котором на границе раствор-металл возникает двойной электрический слой с определенным значением потенциала металла.

+ + + +
– – – –

Zn 0 + mH 2 O → Zn 2+ mH 2 O+2e - + + – – Cu 2+ nH 2 O+2e - → Cu 0 + nH 2 O

+ + + – – –


Рис. 1. Схема возникновения электродного потенциала

При погружении металла не в воду, а в раствор соли этого металла равновесие смещается влево, то есть в сторону перехода ионов из раствора на поверхность металла. При этом устанавливается новое равновесие уже при другом значении потенциала металла.

Для неактивных металлов равновесная концентрация ионов металла в чистой воде очень мала. Если такой металл погрузить в раствор его соли, то катионы металла будут выделяться из раствора с большей скоростью, чем скорость перехода ионов из металла в раствор. В этом случае поверхность металла получит положительный заряд, а раствор – отрицательный из-за избытка анионов соли (рис. 1. б ).

Таким образом, при погружении металла в воду или в раствор, содержащий ионы данного металла, на поверхности раздела фаз металл-раствор образуется двойной электрический слой, обладающий определенной разностью потенциалов. Потенциал электрода зависит от природы металла, концентрации его ионов в растворе и температуры.

Абсолютное значение электродного потенциала j отдельного электрода экспериментально определить нельзя. Однако можно измерить разность потенциалов двух химически различных электродов.

Условились принимать потенциал стандартного водородного электрода равным нулю. Стандартный водородный электрод представляет собой платиновую пластинку, покрытую губчатой платиной, погруженную в раствор кислоты с активностью ионов водорода, равной 1 моль/л. Электрод омывается газообразным водородом при давлении 1 атм. и температуре 298 К. При этом устанавливается равновесие:

2 Н + + 2 е = Н 2

За стандартный потенциал j 0 данного металлического электрода принимается ЭДС гальванического элемента, составленного из стандартного водородного электрода и пластинки металла, помещенной в раствор соли этого металла, причем активность (в разбавленных растворах можно использовать концентрацию) катионов металла в растворе должна быть равна 1 моль/л; Т=298 К; р=1 атм. (стандартные условия). Значение стандартного электродного потенциала всегда относят к полуреакции восстановления:

Me n + +n e - → Me

Располагая металлы в порядке возрастания величины их стандартных электродных потенциалов j 0 , отвечающих полуреакции восстановления, получают ряд напряжений металлов (ряд стандартных электродных потенциалов). В этот же ряд помещают стандартный электродный потенциал системы, принимаемый за нуль:

Н + +2е - → Н 2

Зависимость электродного потенциала металла j от температуры и концентрации (активности) определяется уравнением Нернста, которое применительно к системе:

Me n + + n e - Me

Можно записать в следующем виде:

где - стандартный электродный потенциал, В ;

R – газовая постоянная, ;

F – постоянная Фарадея (»96500 Кл/моль );

n – число электронов, участвующих в процессе;

а Ме n + - активность ионов металла в растворе, моль/л .

Принимая значение Т =298К, получим

причем активность в разбавленных растворах можно заменить концентрацией ионов, выраженной в моль/л.

ЭДС любого гальванического элемента можно определить как разность электродных потенциалов катода и анода:

ЭДС = j катода -j анода

Отрицательный полюс элемента называют анодом, на нем идет процесс окисления:

Ме - ne - → Me n +

Положительный полюс называют катодом, на нем идет процесс восстановления:

Me n + + ne - → Ме

Гальванический элемент можно записать схематично, при этом соблюдаются определенные правила:

1. Электрод слева должен быть записан в последовательности металл – ион. Электрод справа записывается в последовательности ион – металл. (-) Zn/Zn 2+ //Cu 2+ /Cu (+)

2. Реакция, протекающая на левом электроде, записывается как окислительная, а реакция на правом электроде – как восстановительная.

3. Если ЭДС элемента > 0, то работа гальванического элемента будет самопроизвольна. Если ЭДС < 0, то самопроизвольно будет работать обратный гальванический элемент.

Методика проведения опыта

Опыт 1 : Составление медно-цинкового гальванического элемента

Получите у лаборанта необходимое оборудование и реактивы. В химический стакан объемом 200 мл налейте 100 мл 0,1 М раствора сульфата меди (II) и опустите в него медную пластинку, соединенную с проводником. Во второй стакан налейте такой же объем 0,1 М раствора сульфата цинка и опустите в него цинковую пластину, соединенную с проводником. Пластины должны быть предварительно зачищены наждачной бумагой. Получите у лаборанта солевой мост и соедините им два электролита. Солевой мост представляет собой наполненную гелем (агар-агаром) стеклянную трубку, оба конца которой закрыты ватным тампоном. Мост выдерживают в насыщенном водном растворе сульфата натрия, в результате чего происходит набухание геля, у него проявляется ионная проводимость.

С помощью преподавателя присоедините вольтметр к полюсам образовавшегося гальванического элемента и измерьте напряжение (если измерение проводить вольтметром с небольшим сопротивлением, то разница между величиной ЭДС и напряжения невелика). Используя уравнение Нернста, рассчитайте теоретическое значение ЭДС гальванического элемента. Напряжение меньше ЭДС гальванического элемента из-за поляризации электродов и омических потерь.

Опыт 2 : Электролиз раствора сульфата натрия

В опыте за счет электрической энергии, вырабатываемой гальваническим элементом, предлагается провести электролиз сульфата натрия. Для этого в U - образную трубку налейте раствор сульфата натрия и в оба колена ее поместите медные пластины, зачищенные наждачной бумагой и соединенные с медным и цинковым электродами гальванического элемента, как это показано на рис. 2. В каждое колено U-образной трубки прибавьте по 2-3 капли фенолфталеина. Спустя некоторое время в катодном пространстве электролизера наблюдается окрашивание раствора в розовый цвет за счет образования щелочи при катодном восстановлении воды. Это свидетельствует о том, что гальванический элемент работает как источник тока.

Составьте уравнения процессов, протекающих на катоде и на аноде при электролизе водного раствора сульфата натрия.


(–) КАТОД АНОД (+)


солевой мост

Zn 2+ Cu 2+

ZnSO 4 Cu SO 4

АНОД (-) КАТОД (+)

Zn – 2e - → Zn 2+ Сu 2+ + 2e - →Cu

окисление восстановление

12.3 Необходимый уровень подготовки студентов

1. Знать понятия: проводники первого и второго рода, диэлектрики, электрод, гальванический элемент, анод и катод гальванического элемента, электродный потенциал, стандартный электродный потенциал. ЭДС гальванического элемента.

2. Иметь представления о причинах возникновения электродных потенциалов и методах их измерения.

3. Иметь представления о принципах работы гальванического элемента.

4. Уметь использовать уравнение Нернста для расчета электродных потенциалов.

5. Уметь записывать схемы гальванических элементов, уметь вычислять ЭДС гальванических элементов.

Задания для самоконтроля

1. Охарактеризуйте проводники и диэлектрики.

2. Почему в гальваническом элементе анод имеет отрицательный заряд, а в электролизере положительный?

3. В чем различие и сходство катодов в электролизере и гальваническом элементе?

4. Магниевую пластинку опустили в раствор ее соли. При этом электродный потенциал магния оказался равен -2,41 В . Вычислите концентрацию ионов магния в моль/л. (4,17х10 -2).

5. При какой концентрации ионов Zn 2+ (моль/л) потенциал цинкового электрода станет на 0,015 В меньше его стандартного электродного? (0,3 моль/л)

6. Никелевый и кобальтовый электроды опущены соответственно в растворы Ni(NO 3) 2 и Co(NO 3) 2 . В каком соотношении должна быть концентрация ионов этих металлов, чтобы потенциалы обоих электродов были одинаковы? (C Ni 2+ :C Co 2+ = 1:0,117).

7. При какой концентрации ионов Cu 2+ в моль/л значение потенциала медного электрода становится равным стандартному потенциалу водородного электрода? (1,89x 10 -6 моль/л).

8. Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента состоящего из пластин кадмия и магния, опущенных в растворы своих солей с концентрацией = = 1.0 моль/л. Изменится ли величина ЭДС , если концентрацию каждого из ионов понизить до 0,01 моль/л ? (2,244 В ).

Лабораторная работа №13

Loading...Loading...