Волоконный лазер, его преимущества. Иттербиевый волоконный лазер: устройство, принцип работы, мощность, производство, применение Волоконные лазеры

Сверхактивное развитие современной промышленности зачастую стимулирует появление и новых технологических подходов, основанных на передовых научных разработках, направленных на расширение спектра и количества выпускаемой продукции. Удачным примером такого симбиоза требований производства с научными достижениями стала область лазерных технологий. Масса преимуществ с минимумом недостатков стали причиной повсеместного внедрения в сфере маркировки деталей, узлов и изделий оборудования, основой которого стали лазерные технологии.

В индустрии лазерной маркировки применяется широкая гамма лазерного оборудования (КАТАЛОГ) , основанная на применении разных типов лазерных излучателей. Качество излучения, значительный рабочий ресурс и стабильность генерируемого светового потока обусловили самое широкое применение маркировочной аппаратуры на основе твердотельных лазеров. Промышленный маркиратор на базе твердотельного лазера изготавливается в различных форм-факторах и в зависимости от требований производства может быть как компактным для гибкого применения в условиях производственного участка, так и стационарным с дополнительным оборудованием для маркировки серийных партий.

Волоконные лазеры, активно применяющиеся во многих лазерных системах маркировки, относятся к группе твердотельных лазеров, работают с длиной волны 1,064 мкм и позволяют добиваться на выходе высокой мощности луча. Оптоковолоконный лазер генерирует энергию за счёт диодной накачки активной среды, в качестве которой выступает встроенное оптическое волокно.

Типовая схема подобного устройства состоит из трёх основных компонентов:

  1. Модуль накачки. В качестве источника накачки оптических волноводов применяются широкополосные светодиоды или лазерные диоды с одномодовым излучением, обеспечивающие высокую яркость и большой ресурс выработки;
  2. Активная среда. Состоит из активного оптоволокна и волновода накачки. Используются волоконные световоды, легированные добавками редкоземельных элементов или висмута. Плотность легирования определяется длиной изготавливаемого оптоволокна. В качестве основного материала оптоволокна выступает сверхчистый плавленый кварц, обладающий минимальными оптическими потерями. Верхний предел мощности накачки подобного легированного кварца составляет единицы киловатт, который определяется предельной мощностью излучения на единицу площади, при которой материал не разрушается;
  3. Оптический резонатор. Выполняет функции резонансной системы лазера и предназначен для создания положительной обратной оптической связи, за счёт которой лазерный усилитель превращается в лазерный генератор. Он фокусирует излучаемый активным веществом свет в один узкий пучок. Резонатор определяет спектр, поляризацию и направленность генерируемого излучения. Чаще всего в конструкции резонатора используют брэгговские зеркала, кольцевые резонаторы и резонаторы типа Фабри-Перо.

Области применения технологического оборудования для маркировки, оснащённые оптоволоконными лазерами, достаточно разнообразны: точная микрообработка различных материалов, нанесение графической маркировки, микрофрезеровка, нанесение надписей на приборных панелях, художественное структурирование поверхностей. Маркировочная табличка и шильдики, идентифицирующие штрих-коды, обработка тонких фольгированных материалов - всё это с легкостью подвластно аппаратуре на основе оптиковолоконных лазеров.

Устройства маркировки на базе волоконных лазерных излучателей успешно конкурируют с другими видами маркировки, как традиционными, так и на основе других типов лазеров. Они имеют невысокую стоимость, компактны, просты в эксплуатации, имеют высокую скорость работы и КПД.

Изучение проблемы лазерной резки металлов необходимо начать с рассмотрения физических основ работы лазера. Поскольку далее в работе все исследования точности лазерной резки тонколистовых материалов будут проводиться на лазерном комплексе, использующем иттербиевый волоконный лазер, рассмотрим устройство волоконных лазеров.

Лазер – устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Волоконные лазеры были разработаны сравнительно недавно, в 1980-х годах. В настоящее время известны модели волоконных технологических лазеров мощностью до 20 кВт. Их спектральный состав находится в пределах от 1 до 2 мкм. Использование таких лазеров позволяет обеспечить различные временные характеристики излучения.

В последнее время волоконные лазеры активно вытесняют традиционные лазеры из таких областей применения лазерной техники, как, например, лазерная резка и сварка металлов, маркировка и обработка поверхностей, полиграфия и скоростная лазерная печать. Их используют в лазерных дальномера и трехмерных локаторах, аппаратуре для телекоммуникаций, в медицинских установках и т.д.

Основными типами волоконных лазеров являются непрерывные одномодовые лазеры, в том числе однополяризационные и одночастотные; импульсные волоконные лазеры, работающие в режиме модуляции добротности, синхронизации мод, а также в произвольном режиме модуляции; перенастраиваемые волоконные лазеры; сверхлюминисцентные волоконные лазеры; мощные непрерывные многомодовые волоконные лазеры.

Принцип работы лазера основан на пропускании света фотодиода по волокну большой протяженности. Волоконный лазер состоит из модуля накачки (как правило, широкополосные светодиоды или лазерные диоды), световода, в котором происходит генерация, и резонатора. Световод содержит активное вещество (легированнное оптическое волокно - сердцевина без оболочки, в отличие от обычных оптических волноводов) и волноводы накачки. Конструкция резонатора обычно определяется техническим заданием, но можно выделить наиболее распространенные классы: резонаторы типа Фабри - Перо и кольцевые резонаторы. В промышленных установках для повышения выходной мощности иногда объединяют несколько лазеров в одной установке. На рис. 1.2 показана упрощенная схема устройства волоконного лазера.

Рис. 1.2. Типичная схема волоконного лазера.

1 - активное волокно; 2 - брэгговские зеркала; 3 - блок накачки.

Основной материал для активного оптического волокна – кварц. Высокая прозрачность кварца обеспечивается насыщенными состояниями энергетических уровней атомов. Примеси, вносимые легированием, превращают кварц в поглощающую среду. Подобрав мощность излучения накачки, в такой среде можно создать инверсное состояние заселённостей энергетических уровней (то есть, высокоэнергетические уровни будут заполнены больше, чем основной). Исходя из требований на резонансную частоту (инфракрасный диапазон для телекоммуникаций) и малую пороговую мощность накачки, как правило, легирование выполняют редкоземельными элементами группы лантаноидов. Одним из распространённых типов волокон являетсяэрбиевое, используемое в лазерных и усилительных системах, рабочий диапазон которых лежит в интервале длин волн 1530-1565 нм. Вследствие различной вероятности переходов на основной уровень с подуровней метастабильного уровня, эффективность генерации или усиления отличается для различных длин волн в рабочем диапазоне. Степень легирования редкоземельными ионами обычно зависит от длины изготовляемого активного волокна. В пределах до нескольких десятков метров она может составлять от десятков до тысяч ppm, а в случае километровых длин - 1 ppm и менее.

Брэгговские зеркала – распределённый брэгговский отражатель - это слоистая структура, в которой коэффициент преломленияматериала периодически изменяется в одном пространственном направлении (перпендикулярно слоям).

Существуют различные конструкции накачки оптических волноводов, из которых наиболее употребительными являются чисто волоконные конструкции. Одним из вариантов является размещение активного волокна внутри нескольких оболочек, из которых внешняя является защитной (так называемое волокно с двойным покрытием). Первая оболочка изготовляется из чистого кварца диаметром в несколько сотен микрометров, а вторая - из полимерного материала, показатель преломления которого подбирается существенно меньшим, чем у кварца. Таким образом, первая и вторая оболочки создают многомодовый волновод с большим поперечным сечением и числовой апертурой, в который запускается излучение накачки. На рис. 1.3 показана схема накачки лазера, основанного на волокне с двойным покрытием.

Рис. 1.3. Схема накачки лазера, основанного на волокне с двойным покрытием.

К преимуществам волоконных лазеров традиционно относят значительное отношение площади резонатора к его объёму, что обеспечивает качественное охлаждение, термостойкость кремния и небольшие размеры приборов в подобных классах требований по мощности и качеству. Лазерный луч, как правило, необходимо завести в оптическое волокно для последующего использования в технике. Для лазеров иной конструкции это требует специальных оптических систем коллимации и делает устройства чувствительными к вибрациям. В волоконных лазерах генерация излучения происходит непосредственно в волокне, и оно имеет высокое оптическое качество. Недостатками данного типа лазеров являются опасность возникновения нелинейных эффектов из-за высокой плотности излучения в волокне и сравнительно небольшая выходная энергия в импульсе, обусловленная малым объёмом активного вещества.

Волоконные лазеры проигрывают твердотельным в сферах применения, где требуется высокая стабильность поляризации, а использование сохраняющего поляризацию волокна затруднено по различным причинам. Твердотельные лазеры не могут быть заменены волоконными в спектральном диапазоне 0,7-1,0 мкм. Они также имеют больший потенциал для наращивания выходной мощности импульса по сравнению с волоконными. Однако волоконные лазеры показывают хорошие результаты на длинах волн, где не существует достаточно хороших активных сред или зеркал для лазеров иных конструкций, и позволяют с меньшими сложностями реализовывать некоторые лазерные схемы наподобие up-конверсии.

В основе подобных станков лежит оптоволоконный лазер. Он отличается очень высоким качеством излучения при малых габаритах устройства. Кроме того, оборудование легко охлаждается и не требует трудоемкого обслуживания. Оптоволоконные лазерные граверы получили широкое распространение в таких сферах, как:

  • производство сувенирной продукции;
  • автомобилестроение, изготовление медицинского оборудования и другие отрасли, где необходима качественная коррозионно-стойкая маркировка деталей;
  • производство ювелирных изделий и бижутерии;
  • изготовление памятников и ритуальной продукции;
  • декорирование мебели и элементов интерьера.

Волоконные лазерные граверы отличаются несколько более высокой ценой в сравнении с СО 2 -станками. Но это обстоятельство компенсируется рядом преимуществ, которыми обладает подобное оборудование:

  • более высокий КПД, благодаря чему лазер отличается низким расходом электроэнергии при хорошей мощности;
  • работа волоконных лазерных граверов основана на применении диодов, которые характеризуются компактностью, надежностью и долговечностью;
  • сверхмалый размер луча, способствующий более высокому разрешению при гравировке и позволяющий создавать микроскопические изображения с отличной детализацией.

Как выбрать оптоволоконный лазерный гравер

При покупке оборудования необходимо уделить внимание следующим характеристикам:

  • мощность. Она должна соответствовать типу обрабатываемого материала, а также требуемой производительности станка;
  • размеры гравировального поля. Они определяют максимальные габариты заготовки, которую сможет обработать станок;
  • функциональность и наличие дополнительных опций.

Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокна выполнены усиливающая среда и, в отдельных случаях, резонатор.


Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокн а выполнены усиливающая среда и, в отдельных случаях, резонатор. В зависимости от степени волоконной реализации лазер может быть цельноволоконным (активная среда и резонатор) или волоконно-дискретным (волоконный только резонатор или другие элементы ).

Волоконные лазеры могут работать в непрерывной, а также в нано- и фемтосекундной импульсной пульсации.

Конструкция лазера зависит от специфики их работы. Резонатором может быть система Фабри-Перо или резонатор кольцевой. В большинстве конструкций в качестве активной среды используется оптоволокно, допированное ионами редкоземельных элементов – тулий, эрбий, неодим, иттербий, празеодимий. Накачка лазера осуществляется с помощью одного или нескольких лазерных диодов непосредственно в сердцевину волокна или, в мощных системах, во внутреннюю оболочку.

Волоконные лазеры получили широкое применение благодаря широкому выбору параметров, возможности настройки импульса в широком диапазоне длительности, частот и мощностей.

Мощность волоконных лазеров – от 1 Вт до 30 кВт. Длина оптического волокна – до 20 м.


Применение волоконных лазеров:

резка металлов и полимеров в промышленном производстве,

прецизионная резка,

микрообработка металлов и полимеров,

обработка поверхностей,

пайка,

термообработка,

маркировка продукции,

телекоммуникация (оптоволоконные линии связи),

производство электроники,

производство медицинских приборов,

научное приборостроение.

Преимущества волоконных лазеров:

– волоконные лазеры являются уникальным инструментом, открывающим новую эру в обработке материалов,

портативность и возможность выбора длины волны волоконных лазеров позволяют реализовать новые эффективные применения недоступные для других типов ныне существующих лазеров,

– превосходят другие типы лазеров практически по всем существенным параметрам, важным с точки зрения их промышленного использования,

возможности настройки импульса в широком диапазоне длительности, частот и мощностей,

– возможность задания последовательности коротких импульсов с требуемой частотой и высокой пиковой мощностью , что необходимо, к примеру, для лазерной гравировки,

широкий выбор параметров.

Сравнение лазеров различных типов:

Параметр Требуется для использования в промышленности СО 2 YAG-Nd с ламповой накачкой YAG-Nd с диодной накачкой Диодные лазеры
Выходная мощность, кВт 1…30 1…30 1…5 1…4 1…4 1…30
Длина волны, мкм как можно меньше 10,6 1,064 1,064 или 1,03 0,8…0,98 1,07
BPP, мм х мрад < 10 3…6 22 22 > 200 1,3…14
КПД, % > 20 8…10 2…3 4…6 25…30 20…25
Дальность доставки излучения волокном 10…300 отсутствует 20…40 20…40 10…50 10..300
Стабильность выходной мощности как можно выше низкая низкая низкая высокая очень высокая
Чувствительность к обратному отражению как можно ниже высокая высокая высокая низкая низкая
Занимаемая площадь, кв.м как можно меньше 10…20 11 9 4 0,5
Стоимость монтажа, отн.ед. как можно меньше 1 1 0,8 0,2 < 0,05
Стоимость эксплуатации, отн.ед. как можно меньше 0,5 1 0,6 0,2 0,13
Стоимость обслуживания, отн.ед. как можно меньше 1…1,5 1 4…12 4…10 0,1
Периодичность замены ламп или лазерных диодов, час. как можно больше 300…500 2000…5000 2000…5000 > 50 000


2000w cw оптико raycus импульсный волоконный иттербиевый лазер 50 вт 100 квт купить производитель
волоконные твердотельные лазеры
резка металлов фанеры обалденная cernark гравировка режимы глубокой гравировки волоконным лазером
устройство иттербиевого волоконного лазера
волоконная машина продаю лазер
принцип работы производство фрязино 1.65 мкм технология иттербиевый купить цена ipg лс 1 оптический для резки металла гравировка импульсный принцип работы станок оптико применения мощность своими руками устройство схема длина волны сварка производитель режет волнами

Коэффициент востребованности 902

Эти лазеры весьма условно можно выделить в отдельный тип, так как в них использован примерно такой же механизм возбуждения активной среды (накачки), как у газовых или твердотельных лазеров.

В качестве накачки также используются лазерные диоды. Эти источники были разработаны для телекоммуникационных систем волоконной связи, где они применяются в качестве усилителей сигналов. Представьте себе, что кристалл, в котором происходит генерация полезного лазерного излучения, как бы растянут на несколько десятков метров и представляет собой сердцевину волокна диаметром несколько микрон, которая находится внутри кварцевого волокна. Излучение диодов направляется в кварцевое волокно, и на всем его протяжении происходит оптическая накачка сердцевины.

Применение лазерного стекла в качестве активного элемента в твердотельных лазерах известно давно. В отличие от кристаллов, лазерные стекла имеют неупорядоченную внутреннюю структуру. Наряду со стеклообразующими компонентами SiO 2 , B 2 O 3 , P 2 O 5 , BeF 2 , в них содержатся Na 2 O, K 2 O, Li 2 O, MgO, CaO, BaO, Al 2 O 3 , Sb 2 O 3 . Активными примесями чаще всего служат ионы неодима Nd 3+ ; используются также гадолиний Gd 3+ , эрбий Er 3+ , гольмий Но 3+ , иттербий Yb 3+ . Концентрация ионов неодима Nd 3+ в стеклах доходит до 6% (по массе).

В лазерных стеклах достигается высокая концентрация активных частиц. Другим достоинством таких стекол является возможность изготовления активных элементов больших размеров практически любой формы и с очень высокой оптической однородностью. Стекла получают в платиновых или керамических тиглях. К недостаткам использования стекол в качестве лазерных материалов следует отнести относительно широкую полосу генерации (3­10 нм) и низкую теплопроводность, препятствующую быстрому отводу тепла при мощной оптической накачке.

Волоконные лазеры имеют очень высокую (до 80%) эффективность преобразования излучения лазерных диодов в полезное излучение. Для обеспечения их работы достаточно воздушного охлаждения. Эти лазерные источники весьма перспективны для систем цифровой записи печатных форм.

На рис. 3.22 представлена схема работы волоконного лазера с полупроводниковой накачкой и в общем виде весь оптический тракт вплоть до обрабатываемого материала. Главная особенность этого лазера состоит в том, что излучение здесь рождается в тонком, диаметром всего 6­8 мкм, волокне (сердцевине; например, активной средой может быть иттербий), которое находится внутри кварцевого волокна диаметром 400­600 мкм. Излучение лазерных диодов накачки вводится в кварцевое волокно и распространяется вдоль всего сложного составного волокна, имеющего в длину несколько десятков метров.

Рисунок 3.22 – Оптическая система с волоконным лазером:

1 – сердцевина, легированная иттербием, диаметр 6-8 мкм; 2 – кварцевое волокно, диаметр 400-600 мкм; 3 – полимерная оболочка; 4 – внешнее защитное покрытие; 5 – лазерные диоды оптической накачки; 6 – оптическая система накачки; 7 – волокно (до 40 м); 8 – коллиматор; 9 – модулятор света; 10 – фокусирующая оптическая система

Излучение оптически накачивает сердцевину, и именно здесь, на атомах иттербия, происходят физические превращения, приводящие к возникновению лазерного излучения. Вблизи концов волокна на сердцевине делают два так называемых дифракционных зеркала в виде набора насечек на цилиндрической поверхности сердцевины (дифракционные решетки) – так создается резонатор волоконного лазера. Общую длину волокна и количество лазерных диодов выбирают, исходя из требуемой мощности и эффективности. На выходе получается идеальный одномодовый лазерный пучок с весьма равномерным распределением мощности, что позволяет сфокусировать излучение в пятно малого размера и получить большую, чем в случае мощных твердотельных Nd:YAG­лазеров, глубину резкости.

Стоит также отметить, что ряд таких свойств излучения волоконных лазеров, как, например, характер поляризации пучка, делает удобным и надежным управление этим излучением с помощью акусто­оптических устройств и позволяет реализовать многолучевые схемы записи изображений.

Поскольку оптическая накачка идет по всей длине волокна, то отсутствуют такие свойственные обычным твердотельным лазерам эффекты, как термолинза в кристалле, искажения волнового фронта вследствие дефектов самого кристалла, нестабильность луча во времени и др., которые всегда препятствовали достижению максимальных возможностей твердотельных систем. Однако сами принципы строения и работы волоконного лазера гарантируют высокие эксплуатационные характеристики и делают данные устройства совершенными преобразователями светового излучения в лазерное.

«Сердечник» лазера толщиной всего лишь несколько микрометров состоит из иттербия и функционирует как резонатор. Наилучшего качества удается добиться при длине волны излучения 1110 нм, при этом длина оптоволоконного кабеля может достигать 40 м. Серийно выпускаются лазеры мощностью от 1 до 100 Вт, с КПД около 50%. Оптоволоконные лазеры обычно не требуют специального охлаждения. Минимальный размер пятна у современных оптоволоконных лазеров – около 20 мкм, причем при использовании механизмов коррекции его удается уменьшить до 5 мкм. Глубина фокуса составляет 300 мкм, что позволяет без механизма автофокусировки успешно работать с формными материалами различной толщины.

Loading...Loading...