Водоподготовка на тэц. Очистка сточных вод. Сточные воды ТЭЦ


При использовании в качестве греющей рабочей среды горячей воды ее берут из бойлерных установок, а из пластинчатого аппарата возвращают на повторный подогрев.  

Пар из регенеративных отборов турбины может быть подан также на - испарительную и бойлерную установки, на калориферы перед воздухоподогревателем котельного агрегата и на другие нужды.  

Внешний вид насоса типа Д.| Характеристики насоса Д-320-70.  

Конденсатные насосы применяются для удаления конденсата, а также как горячие, дренажные насосы бойлерных установок. Они предназначены для перекачивания конденсата и дренажа при температуре до 393 К.  

Характеристика насоса типа бНДс.| Внешний вид и схема включения колес четырехступенчатого насоса марки ЗВ-200Х4.  

Конденсатные насосы применяются для удаления конденсата, а также как горячие, дренажные насосы бойлерных установок. Они предназначены для перекачивания конденсата с температурой до 50 С и дренажа при температуре до 120 С.  

В течение одиннадцатой пятилетки предусмотрено полностью перевести жилые поселки всех действующих АЭС на теплоснабжение от бойлерных установок электростанций и прекратить расходование органического топлива для этих целей. Кроме того, в тех случаях, когда имеются достаточно концентрированные тепловые нагрузки на (приемлемом расстоянии, предусматривается полное или частичное (в пределах возможностей АЭС) снабжение этих потребителей тепловой энергией от АЭС. В частности, намечается подача тепловой энергии от Ростовской АЭС в г. Волгодонск и на завод Атоммаш, а также от Балаковской АЭС в г. Балаково и предприятия, в нем расположенные.  

В целях максимальной экономии конденсата отопление вновь вводимых в эксплуатацию цехов рекомендуется организовывать водяным от их центральной бойлерной установки, находящейся непосредственно в котельной.  

При обогреве цеховых и межцеховых технологических трубопроводов протяженностью до 500 м горячей водой от ТЭЦ или от специальных бойлерных установок диаметры обогревающих спутников могут приниматься в зависимости от условного диаметра обогреваемого трубопровода. При паровом обогреве трубопроводов протяженностью до 250 м диаметры обогревающих спутников и их число принимают по специальным нормам. Обогревающие спутники трубопроводов большой протяженности должны разбиваться на участки с отдельным подводом и отводом греющей среды.  

Группа теплосилового оборудования осуществляет технический надзор за соблюдением службами отдела и цехами завода правил технической эксплуатации котельных, бойлерных установок, водонасосных и компрессорных установок, азотно-кислородных, ацетиленовых, газогенераторных станций, сосудов, работающих под давлением, промышленных печей, работающих на жидком, газообразном и твердом топливе, и мазутохранилищ. Участвует в составлении планов ППР, ведет проектирование новых установок и модернизацию существующего теплосилового оборудования, организует обследование и наладку оборудования с целью увеличения их производительности.  

При обогреве цеховых и межцеховых технологических трубопроводов протяженностью до 500 м - горячей водой от ТЭЦ или от специальных бойлерных установок диаметры обогревающих спутников могут приниматься в зависимости от условного диаметра обогреваемого трубопровода. При паровом обогреве трубопроводов протяженностью до 250 м диаметры обогревающих спутников и их число принимают по специальным нормам. Обогревающие спутники трубопроводов большой протяженности должны разбиваться на участки с отдельным подводом и отводом греющей среды.  

Тупиковая система подачи воды с предварительным прогревом варочной камеры экономически более выгодна, так как циркуляционная система требует увеличения мощности бойлерной установки в соответствии с кратностью циркуляции и дает более повышенный расход пара. Тупиковая система подачи перегретой воды намного проще и дешевле циркуляционной, потери перегретой воды будут примерно в 2 раза меньше, чем при циркуляционной.  

Монтаж внутреннего санитарно-технического оборудования гражданских и промышленных зданий, как и монтаж громоздкого и тяжелого оборудования (например, котельных агрегатов, бойлерных установок и др.), целесообразно выполнять одновременно с процессами возведения основных конструкций здания. Совмещенный метод монтажа санитарно-технического оборудования является прогрессивным, так как обеспечивает сокращение общего срока строительства, открывает возможность полнее использовать грузоподъемное оборудование, имеющееся на строительной площадке.  

При отпуске тепла для отопления и вентиляции потеря конденсата вне станции может быть сведена к нулю применением типовой схемы водяного отопления и бойлерной установки (гл. Отпуск технологического пара сопровождается обычно значительной потерей конденсата вне станции. При этом конденсат иногда теряется для станции полностью.  

Теплоэнергетика в современных условиях выжить без водоподготовки не сможет. Отсутствие очистки воды и умягчения может привести к поломке оборудования, некачественному пару или воде, и как результат, парализации всей системы. Постоянное удаление накипи застраховать вас от таких неприятностей, как повышенный расход топлива, образование и развитие коррозии, не может. Только водоподготовка на ТЭЦ может одним махом решить весь комплекс проблем.

Чтобы лучше разобраться в проблемах использования того или иного на теплоэнергоцентралях, начнем с рассмотрения основных понятий. Что такое теплоэнергоцентраль, и как там может помешать повышенная жесткость воды нормальной работе системы?

Итак, ТЭЦ или теплоэлектроцентраль представляет собой один из видов тепловой электростанции. Ее задача состоит не только в генерации электроэнергии. Это еще и источник тепловой энергии для системы теплоснабжения. С таких станций подают горячую воду и пар для обеспечения тепла в домах и на предприятиях.

Теперь пару слов о том, как работает теплоэлектростанция. Работает она, как конденсационная электростанция. Принципиальное различие водоподготовки на ТЭЦ состоит в том, что из генерируемого тепла ТЭЦ есть возможность часть отобрать для других нужд. Способы забора тепловой энергии зависит от типа паровой турбины, которая установлена на предприятии. Также на ТЭЦ можно регулировать то количество пара, которое вам необходимо отобрать.

Все, что отделено, потом концентрируется в сетевом подогревателе или подогревателях. Они уже передают энергию воде, которая идет дальше по системе для передачи своей энергии в пиковых водогрейных котельных и тепловых пунктах. Если на ТЭЦ такой отбор пара не производят, то такая ТЭЦ имеет право квалифицироваться, как КЭС.

Любая водоподготовка на ТЭЦ работает по одному из двух графиков нагрузки. Один из них тепловой, другой, электрический. Если нагрузка тепловая, то электрическая ей полностью подчинена. У тепловой нагрузки над электрической есть паритет.

Если нагрузка электрическая, то она не зависит от тепловой, возможно тепловой нагрузки нет вообще в системе.

Есть также вариант совмещения водоподготовки на ТЭЦ электрической и тепловой нагрузок. Это помогает остаточное тепло использовать в отоплении. В результате коэффициент полезного действия в ТЭЦ значительно выше, чем у КЭС. 80 против 30 процентов. И еще - при строительстве тепловой электростанции, нужно помнить, что передать тепло на дальние расстояния не получится. Поэтому ТЭЦ должна быть расположена в пределах города, который она питает.

У есть главный недостаток – это нерастворимый осадок, который образуется в результате нагрева такой воды. Удалить его не так просто. На ТЭЦ придется останавливать всю систему, иногда ее разбирать, чтобы качественно во всех поворотах и узких отверстиях почистить накипь.

Как мы уже знаем, главный минус накипи – ее плохая теплопроводимость. Из-за этой особенности и возникают основные расходы и проблемы. Даже легкий налет накипи на поверхностях нагревательных поверхностей или нагревательных элементов вызывают резкий рост расходов топлива.

Устранять накипь постоянно не получится, это можно будет делать хотя бы раз в месяц. Расходы топлива при этом будут постоянно расти, да и работа ТЭЦ оставляет желать лучшего, все отопительно-нагревательное оборудование медленно, но верно покрывается накипью. Чтобы потом ее почистить, придется останавливать всю систему. Терпеть убытки от простоев, но чистить накипь.

О том, что пришло время для чистки вам сообщит само оборудование. Начнут внезапно срабатывать системы защиты от перегрева. Если и после этого не удалить накипь, то она полностью блокирует работу теплообменников и котлов, возможны взрывы, образование свищей. Вы всего-то за несколько минут можете лишиться дорогостоящего промышленного оборудования. И восстановить его невозможно. Только покупать новое.

Да и потом, любая очистка от накипи, это всегда испорченные поверхности. Можно использовать водоподготовку на ТЭЦ, но она за вас накипь не устранит, потом все равно придется отчищать ее с помощью механического оборудования. Имея такие покореженные поверхности, мы рискуем получить резкое развитие не только образования накипи, но еще и коррозии. Для оборудования теплоэлектроцентрали, это большой минус. Поэтому и задумались о создании установки водоподготовки на ТЭЦ .

Водоподготовка на мини ТЭЦ

Если говорить в общем, то состав такой будет зависеть, прежде всего, от химического анализа воды. Он покажет оббьем воды, который нужно очищать каждый день. Она покажет примеси, которые нужно устранить, прежде всего. Обойтись без такого анализа при составлении водоподготовки на мини ТЭЦ нельзя. Даже степень жесткости воды он покажет. Мало ли вдруг вода не настолько жесткая, как вам кажется, и проблема в кремниевых или железистых отложениях, а вовсе не в солях жесткости.

В большинстве своем для оборудования ТЭЦ большую проблему составляют примеси, которые находятся в подпиточной воде. Это те самые соли кальция и магния, а также соединения железа. А это значит, что обойтись без обезжелезивателя и электромагнитного умягчителя воды АкваЩит, как минимум будет сложно.

ТЭЦ, как известно, обеспечивает теплой водой и отоплением дома в городе. Поэтому водоподготовка на мини ТЭЦ всегда будет включать в себя не только стандартные . Здесь без вспомогательных фильтров для воды никак не обойтись. Примерно, всю схему водоподготовки можно представить в виде таких этапов, и содержащихся в них фильтрах.

Для ТЭЦ используют воду из первичных источников, очень загрязненную, поэтому первым этапом водоподготовки на мини ТЭЦ будет осветление. Здесь в большинстве случаев используют механические фильтры, а также отстойники. Последние думаю, понятны всем, там воду отстаивают, чтобы примеси твердые оседали.

Механические фильтры включают в себя несколько решеток из нержавеющей стали. Они улавливают в воде все твердые примеси. Сперва, это крупные примеси, потом средние и в конце совсем мелкие, размером с песчинку. Механические фильтры могут использовать с коагулянтами и флокулянтами, чтобы очищать воду и от вредных бактериологических примесей.

Восстанавливают механические фильтры с помощью обычной обратной промывки простой водой.

Следующий этап водоподготовки на мини ТЭЦ - устранение вредных бактерий и вирусов или дезинфекция. Для этого могут использовать, как дешевую, но вредную хлорку, так и дорогой, но безвредный при полном испарении. озон.

Другой вариант обеззараживания воды – использование ультрафиолетового фильтра. Здесь основу составляет ультрафиолетовая лампа, которая облучает всю воду, проходящую через специальную кювету. Проходя, через такой фильтр вода облучается, и в ней погибают все бактерии и вирусы.

После обеззараживания наступает этап . Здесь могут использоваться самые разные фильтры для воды. Это могут быть ионообменные установки, электромагнитный умягчитель воды Акващит или его магнитная вариация. О преимуществах и минусах каждой установки расскажем чуть позже.

Кроме стандартных фильтров можно еще использовать реагентное отстаивание. Но добавление различных примесей, может вылиться потом в образование не растворимых отложений, которые очень плохо удаляются.

После этапа умягчения настает время для обессоливания воды. Для этого в ход идут анионные фильтры, возможно применение декарбонизатора, электродиадизатора, ну и стандартно обратного осмоса или нанофильтрации.

После тонкой очистки воды, нужно в обязательном порядке из воды убрать остаточные растворенные газы. Для этого проводят деаэрацию воды. Здесь могут применять термические, вакуумные, атмосферные деаэраторы. То есть все, что нужно для подпиточной воды, мы сделали. Теперь остаются уже общие действия по подготовке непосредственно самой системы.

Потом в силу вступает этап продувки котла, для этого используют промывные фильтры для воды и последним этапом водоподготовки на мини ТЭЦ является промывка пара. Для этого применяют целый набор химических реагентов для обезсоливания.

В Европе использование качественной водоподготовки на мини ТЭЦ помогает получить коэффициент полезного действия потерь в размере всего лишь четверть процента в день. Как раз комбинирование традиционных методов умягчения воды и очистки с новейшими технологиями помогает достигнуть таких высоких результатов работы системы водоподготовки на мини ТЭЦ. И при этом сама система бесперебойно может прослужить до 30-50 лет, без кардинальных замен этапов.

А теперь вернемся к системе водоподготовки для ТЭЦ и к водоподготовительной установке для ТЭЦ. Здесь используют весь спектр фильтров, главное это правильно выбрать необходимый прибор. Чаще всего система требует применения ни одного, а сразу нескольких фильтров, соединенных последовательно, чтобы вода прошла и стадию умягчения, и стадию обезсоливания.

Самым наиболее используемым является ионообменная установка. В промышленности такой фильтр выглядит как высокий бак в виде цилиндра. Он в обязательном порядке снабжен баком поменьше, это бак регенерации фильтра. Поскольку ТЭЦ работает с водой круглые сутки, то ионообменная установка будет многоступенчатой и включать в себя будет не один, а иногда и три, и четыре фильтра. На всю эту систему приходится один блок управления или контроллер. Каждый фильтр при этом снабжен своим баком регенерации.

Контроллер тщательно следит за тем, сколько воды прошло через установку. Сколько очистил тот или иной фильтр, четко фиксирует время очистки, скорость очистки, по истечении определенного срока очистки или определенного обьема, она подает сигнал на установку. Жесткую воду перераспределяют на другие фильтры, а загрязненный картридж направляют на восстановление. Для этого из установки его вынимают и переносят в бак для регенерации.

Сам процесс системы водоподготовки для ТЭЦ проходит по следующей схеме. Сердце такого ионообменного картриджа – смола, обогащенная слабым натрием. Когда с ней контактирует жесткая вода, происходят метаморфозы. Сильные соли жесткости заменяют слабый натрий. Постепенно картридж весь забивается солями жесткости. Это и есть время для восстановления.

Когда картридж переносят в бак регенерации, там уже в растворенном виде находятся таблетки соли высокой степени очистки. Соляной раствор, который получается в результате очень насыщенный. Процент содержания соли не менее 8-10 процентов. Но только таким большим количеством солей можно устранить из картриджа сильные соли жесткости. В результате промывки образуются сильносоленые отходы, и картридж, вновь наполненный натрием. Его отправляют работать, а вот с отходами возникает проблема. Чтобы их утилизировать, их нужно повторно очистить, то есть снизить степень солености и получить разрешение на утилизацию.

Это большой минус установки, да и расходы на соли получаются немалыми, что тоже дает дорогое обслуживание установке. Зато скорость очистки воды у этого умягчителя самая высокая.

Следующий популярный вариант системы водоподготовки для ТЭЦ – электромагнитный умягчитель воды АкваЩИт. Здесь основную работу выполняет электрический процессор, плата и мощные постоянные магниты. Все это в комплексе создает мощное электромагнитное поле. В воду эти волны поступают по проводке, намотанной с двух сторон от прибора. Причем, нужно помнить, что наматывать провода нужно в разные стороны друг от друга. Каждый провод должен быть обмотан вокруг трубы, не менее семи раз. Эксплуатируя этот прибор, нужно в обязательном порядке следить, что вода не попадала на проводку.

Сами концы проводов нужно обязательно закрыть изоляционными кольцами или обычной изолентой. Так вот, вода проходит по трубе, ее облучают электромагнитные волны. Многим кажется, что влияние подобного – мифическое. Однако, соли жесткости под его влиянием начинают трансформироваться, теряют былую форму и превращаются в тонкие и острые иголки.

Получив новую форму, прилипать к поверхностям оборудования становится неудобно. Тонкое узкое тело иголки не держится на поверхностях. Но зато отлично отдирает старую накипь от стенок оборудования. И делает это тонко и качественно, не используя при этом ни каких вспомогательных средств. Такая работа является главным козырем электромагнитного умягчителя воды АкваЩит. Он сделает и свою работу, то есть умягчит воду и старую накипь уберет очень качественно. И для этого не придется покупать средства от накипи. Все обеспечат мощные постоянные магниты из редкоземельных металлов и электрический ток.

У данного прибора большое количество преимуществ перед другими установками. За ним не нужно ухаживать, он все делает сам. Он полностью уберет из вашего обихода такое понятие, как очистка от накипи. Он в состоянии работать с любыми поверхностями, главное только монтировать его на чистый отрезок трубы.

Потом электромагнитный прибор может проработать без замен в течение четверти столетия. Такое долгое использование гарантируют как раз редкоземельные металлы, которые со временем не теряют практически своих магнитных свойств. Здесь даже привыкания воды к магнитному воздействию нет. Правда, такой прибор не работает со стоячей водой. Также если вода течет одновременно более, чем в двух направлениях, магнитное поле также не работает.

И наконец, пару слов об обратном осмосе, как системе водоподготовки для ТЭЦ. Обойтись при производстве подпиточной воды без этой установки нельзя. Только она гарантирует практически стопроцентную очистку воды. Здесь есть сменные мембраны, которые позволяют получить воду с заданными характеристиками. Но при этом, прибор нельзя применять самостоятельно. Только в комплекте с другими умягчителями, что делает установку более дорогой. Но стопроцентная компенсирует все минусы дороговизны.

Мы подробно рассмотрели все системы водоподготовки для ТЭЦ. Ознакомились со всеми возможными умягчителями, которые могут использоваться в этой системе. Теперь вы сможете легко ориентироваться в мире умягчения.

Материалы статьи содержат чертеж принципиальной схемы тепловой электростанции с паровыми котлами и турбинами,схема включает ренеративную систему, система сетевой воды и технического водоснабжения.

Условные обозначения

  • БА ГВС (баки-аккумуляторы ГВС) – для сглаживания неравномерности расхода подпиточной воды.
  • БГВС (ПГВС) (бойлер, подогреватель горячего водоснабжения) – для подогрева подпиточной (осветлённой) воды.
  • БЗК (бак запаса конденсата) – для запаса обессоленной воды и сглаживания неравномерности в потреблении обессоленной воды.
  • БНТ (бак нижних точек) – бак для организованного сбора протечек обессоленной воды в турбинном отделении КТЦ.
  • БУ (бойлерная установка) – группа ОБ.
  • Водо-водяные теплообменники – для подогрева осветлённой воды.
  • Г – генератор
  • Дренажный бак – для сбора дренажей оборудования ТЭЦ.
  • Дренажный насос – для перекачки воды из дренажных баков в схему ТЭЦ.
  • ЗПН (зимний подпиточный насос) – для подачи подпиточной воды в обратные магистрали теплосети.
  • К – котёл
  • КН (конденсатный насос) – для откачки конденсата из теплообменных аппаратов.
  • Конденсатор – для конденсации обработанного в турбине пара.
  • ЛПН (летний подпиточный насос) - для подачи подпиточной воды при работе по однотрубной схеме теплосети (летний период).
  • НБЗК (насос БЗК) – для перекачки обессоленной воды в схему ТЭЦ.
  • НБНТ (насос баков нижних точек) – для перекачки воды из БНТ в схему ТЭЦ.
  • НОВ ГВС – для перекачки воды после мехфильтров ХЦ в схему ТО КТЦ).
  • НППВ (насос перекачки питательной воды) – для возврата конденсата с I очереди в деаэраторы II оч.
  • НСВ ГВС (насос сырой воды ГВС) – для подачи циркуляционной воды в схему подготовки подпиточной во-ды.
  • ОБ (основной бойлер) – для подогрева сетевой воды на I очереди.
  • ПВД (подогреватель высокого давления) – для подогрева питательной воды паром нерегулируемых отборов турбины.
  • ПВК (пиковый водогрейный котёл) для подогрева сетевой воды
  • Перекачивающий насос – для перекачки обессоленной воды из деаэраторов 1,2 ата I очереди в деаэраторы 6 ата.
  • ПНД (подогреватель низкого давления) – для подогрева основного конденсата паром нерегулируемых отборов турбины.
  • ПОВ (подогреватель обессоленной воды) – для подогрева обессоленной воды.
  • Подпорный насос – для подачи сетевой воды через СПГ на всас СН II очереди.
  • ПСВ (подогреватель сырой воды) – для подогрева сырой воды подаваемой на обессоливающую установку ХЦ.
  • ПЭН (питательный электронасос) – предназначен для обеспечения котлов питательной водой.
  • РД (регулятор давления) – для поддержания заданного значения давления.
  • РОУ (редукционная охладительная установка) – для снижения параметров пара по давлению и температуре.
  • Сливной насос – для перекачки конденсата греющего пара из ПНД в линию основного конденсата турбины.
  • СН (сетевой насос) – для подачи сетевой воды в город.
  • СПГ (сетевой подогреватель горизонтальный) – для подогрева сетевой воды на II очереди.
  • ТГ – турбогенератор
  • Эжектор – для удаления неконденсирующихся газов из теплообменных аппаратов.

Котлоагрегаты

На ТЭЦ установлено 6 котлов, отличающиеся конструктивно, по производительности, температуре и давлению пара.

Все котлы барабанные с естественной циркуляцией, П-образной компоновки (К-1,2 двухбарабанные), работают на 2-х видах топлива: газ - мазут. Количество горелок: К-1,2 – 4 газовых горелки + 4 мазутных форсунки; К-3 – 2 газовых горелки + 2 мазутных форсунки; К-4,5,6 – 8 газовых горелок + 8 мазутных форсунок. На котлах 1 очереди имеется стеклянный регенеративный воздухоподогреватель. Для поддержания горения на котлах установлено по 2 дутьевых вентилятора (ДВ), дымовые газы удаляются дымососами (Д). Для уменьшения в отработанных газах содержания NO Х, а также режима горения при работе на мазуте, на котлах установлены дымососы рециркуляции дымовых газов (ВГД, ДРГ).

Схема подготовки подпиточной воды ГВС

В целях увеличения тепловой мощности ТЭЦ и для использования тепла конденсаторов ТГ – 1,2 работающих по тепловому графику (с закрытыми диафрагмами, включёнными бойлерами) на подогрев воды, идущей на всас НСВ ГВС № 1,2,3.4 2 оч, используется следующая схема.

Циркуляционная вода поступает в конденсаторы ТГ – 1,2 подключенных последовательно, где происходит её нагрев до 10-15°С.далее из сливных водоводов левой и правой половин конденсатора ТГ – 2 вода через две задвижки Ду 500 мм (№ 708/III, 711/III) направляется в трубопровод Ду 700 мм (смонтированный вдоль машзала –на I оч. по ряду «Д», на II оч. по ряду «А») и через задвижку Ду 600 мм (№ 1342) попадает на всас НСВ ГВС – 1,2,3,4 и далее через встроенные пучки конденсаторов ТГ – 3,4, где происходит её дальнейший нагрев (максимально до 40°С) на механические фильтры ХЦ.

(Visited 29 457 times, 15 visits today)

Эксплуатация тепловых электрических станций и теплоцентралей связана с использованием большого количества воды. Основная часть воды (более 90%) расходуется в системах охлаждения различных аппаратов: конденсаторов турбин, масло- и воздухоохладителей, движущихся механизмов и прочее.

Сточной водой является любой поток воды, выводимый из цикла электростанции. Основные сточные воды, образующиеся при работе ТЭЦ и ТЭС следующие (в порядке убывания объёмов стоков):

    сточные воды как оборотных, так и прямоточных (разомкнутых) систем гидрозолошлакоудаления (ГЗУ) электростанций, работающих на твердом топливе;

    продувочные воды оборотных систем водоснабжения ТЭС, сбрасываемые постоянно;

    сточные воды водоподготовительных (ВПУ) установок, сбрасываемые периодически и/или постоянно, в том числе: концентрат обратного осмоса, промывная вода механических фильтров, элюаты после регенерации ионообменных фильтров;

    продувочные воды паровых котлов, испарителей и паропреобразователей, сбрасываемые постоянно;

    снеговые и дождевые стоки с территории, содержащие взвешенные частицы различного характера и нефтепродукты (в том числе мазуты);

    замасленные, загрязненные внешние конденсаты, пригодные после их очистки для питания паровых котлов-испарителей;

    отработанные моющие кислые и щелочные растворы и отмывочные воды после химических промывок и консервации паровых котлов, конденсаторов, подогревателей и другого оборудования (периодический сток, образующийся обычно в летний период);

В качестве примера, можно привести состав стока современной ТЭЦ, использующей в качестве топлива природный газ.

На ТЭЦ используется следующее энергетическое оборудование:

    Три турбогенераторные установки (ТГУ) типа ТВМ-Т130 производства компании ТURВОМАСН SA (Швейцария) установленной электрической мощностью 14,4 МВт каждая. ТГУ оборудованы котлами-утилизаторами, предназначенными для производства 19 тонн пара в час.

    Одним паровым турбогенератором производства Siemens AG (Германия) установленной электрической мощностью 20,8 МВт, с отбором пара на теплофикацию.

    Для работы в отопительный период, предусмотрена установка двух паровых котлов ОКР-25 паропроизводительностью по 25 тонн в час.

Исходная вода – поверхностная. Характеристики стоков усреднённые, даны на основании обработки статистических данных по химическому составу стоков, некоторые показатели расчётные.

Общий поток исходных сточных вод, поступающих на очистку формируют следующие локальные потоки:

    1. Сток концентрата обратного осмоса и промывную воду с фильтров механических и сорбционных угольных.

Объём стока – до 16 м 3 /час из них концентрат обратного осмоса – до 14,5 м 3 /час.

Сток характеризуется следующим усреднённым составом:

Анионы

Прочее

Кальций (Ca 2+)

Гидрокарбонаты (HCO 3 -)

Перманганатная окисляемость (П/О)

Магний (Mg 2+)

Хлориды (Cl -)

Общая жёсткость (ОЖ)

Медь (Cu 2+)

Сульфаты (SO 4 2-)

Щёлочность (Щ)

Алюминий (Al 3+)

Фосфаты (PO 4 3-)

Кремний (Si)

Железо (Fe 3+)

Нитраты (NO 3 -)

Аммоний ион (NH 4+)

    1. Стоки с градирни. Постоянная продувка – 26 м 3 /час.

Анионы

Прочее

Гидрокарбонаты

Перманганатная окисляемость

Сульфаты

Щёлочность

Алюминий

Взвешенные вещества (ВВ)

c. Стоки после промывки песчаных фильтров.

Объём промывной воды – до 400 м 3 /мес.

Анионы

Прочее

d. Промывка охладительной системы.

Объём промывной воды – до 350 м 3 /мес.

Анионы

Прочее

Перманганатная окисляемость

e. Продувка котельного оборудования периодическая и непрерывная

Периодическая продувка

Непрерывная продувка
с 5 котлов

Паровый котлы

Общий объём периодической промывки

Кол-во в сутки

Продолжительность

Котлы утилизаторы

Суммарный расход непрерывная + периодическая продувки

Кол-во в сутки

м 3 /час

Продолжительность

Состав стоков после продувки котельного оборудования.

Перманганатная окисляемость

Нитриты (NO 2 -)

Натрий (Na +)

f. Существуют также некоторое количество небольших потоков сточных вод.

Общий суммарный поток после усреднения, объёмный расход стока и состав.

Объёмный расход – до 50 м 3 /час.

Катионы

Анионы

Прочее

Перманганатная окисляемость

Возможно данный пример не совсем корректен, так как данная ТЭЦ весьма небольшая и оборудована современным оборудованием. Например, здесь отсутствует сток после регенерации ионообменных фильтров, так как данная ТЭЦ оборудована современной системой обратного осмоса.

Цель – разработка технологического процесса, обеспечивающего получение воды для последующего сброса в водоём рыбохозяйственного назначения.

1. Для стока подобного состава была предложена следующая технологическая схема процесса очистки:

1) Усреднение сточных вод с целью регулирования потока сточной воды и исключения значительных колебаний состава по отдельным компонентам в период залповых сбросов.

2) Дезинфекция потока исходной воды гипохлоритом натрия, необходима для поддержания санитарного состояния очистных сооружений.

3) Реагентное умягчение воды содово-натриевым методом, необходим для удаления кальция из исходной воды.

4) Коагуляция железосодержащими реагентами и флокуляция для последующего удаления образовавшихся кристаллов карбонатов кальция и частиц гидроксида магния.

5) Процесс тонкослойного отстаивания с целью выделения взвешенных частиц.

6) Удаление взвешенных частиц и кристаллов карбоната натрия гидравлической крупностью менее 0,2 мм/с в процессе трубчатой ультрафильтрации.

7) Сорбция органических соединений на активированном угле.

8) Процесс двухступенчатого обратного осмоса с целью получения очищенной воды пригодной для возврата в производство или сброса в водоём рыбохозяйственного назначения, а также минимизация образующегося концентрата обратного осмоса.

9) Вакуумное выпаривание для получения солей с влажностью 40-60% и их возможной последующей утилизации как твёрдых промышленных отходов, чистый конденсат смешивается с фильтратом обратного осмоса и также возврат в производство или сброс в водоём рыбохозяйственного назначения.

10) Образующиеся шламы подвергаются обезвоживанию.

2. Описание технологического процесса.

Концентрат обратного осмоса и промывных вод с угольных фильтров, сток с градирни, промывные воды песчаных фильтров, продувка котельного оборудования, и другие потоки направляется в приёмную камеру усреднителя.

Тип усреднителя – многоканальный с барботажем. Исходные стоки попадают в приёмную камеру усреднителя, сюда же дозируется раствор гипохлорита натрия. Подача гипохлорита натрия необходима для дезинфекции исходной воды, т.к. исходный сток, загрязнён с точки зрения микробиологии (ОМЧ в некоторых случаях составляет до 10000).

Усреднённый сток собирается в камере усреднённых стоков, откуда насосами подаётся на собственно очистку.

Первый этап очистки – реагентное умягчение содово-натриевым способом. Цель данного этапа – удаление из воды ионов кальция и частично магния. Дело в том, что для финишного этапа – процесса обратного осмоса требуется тщательная предподготовка и одна из важнейших задач в процессе предподготовки, это удаление ионов и солей, которые в процессе концентрирования на обратном осмосе могут выпадать на поверхности мембраны в виде малорастворимых соединений. Для данной воды основным катионом, который будет давать на поверхности мембраны осадки солей, является катион кальция Ca 2+ , в процессе обратного осмоса кальций образует карбонатные и сульфатные отложения, а также формирует малорастворимые фосфатные и фторидные соли. Именно поэтому тщательное удаление ионов кальция, является важным этапом предподготовки перед обратноосмотическим разделением.

В основе содово-натриевого метода умягчения лежит принцип удаления ионов кальция в виде труднорастворимых карбонатов. Для перевода кальция в карбонатные соединения, должно выполняться условие, когда исходная воды содержит гидрокарбонаты в эквивалентном к кальцию количестве. Когда соблюдается равенство эквивалентных количеств кальция и гидрокарбонатов процесс можно вести только добавлением щёлочи к исходной воде до рН 10,0-10,5. В этом случае основная часть гидрокарбонатов переводится в карбонаты и выпадает в осадок в виде кристаллического карбоната кальция.

В случае если содержание гидрокарбонатов в исходной воде меньше чем содержание кальция, необходима дозировка соды – карбоната натрия для подачи в исходную сточную воду недостающего количества карбонатов.

Исходная сточная вода подаётся насосом в реактор. Реактор представляет собой прямоугольный в плане резервуар, разделённый на 3 секции, каждая секция оборудована мешалкой. В 1-ой секции установлена высокоскоростная мешалка и в эту же секцию подаются исходные реагенты: гидроксид натрия в виде 40-45% раствора и при необходимости карбонат натрия (сода) в виде 10% водного раствора. В 1-ой камере КР реагенты равномерно и быстро перемешиваются с исходной водой, при этом контроль процесса осуществляется рН-метром.

Вторая и третья камеры реактора КР оборудованы низкоскоростными мешалками и рассчитаны на время пребывания 15-16 минут каждая. В этих камерах проходит процесс образования кристаллов карбоната кальция и хлопьев хлорида магния, причём особенностью образования кристаллов карбоната натрия является то, что растворы при рН 10-11 и без значительного количества взвешенных веществ в исходной воде могут долгое время находится в пересыщенном состоянии без образования кристаллов. Для интенсификации процесса кристаллообразования часть шлама, который выделяется далее в виде шлама в отстойниках пневматическими мембранными насосами возвращаются во вторую камеру реактора КР в качестве центров кристаллизации. В третьей камере завершается процесс образования кристаллов карбоната кальция и хлопьев гидроксида магния.

Второй этап очистки – обработка воды коагулянтом и флокулянтом. Учитывая, что после процесса реагентного умягчения, образующиеся кристаллы карбоната кальция и хлопья гидроксида магния имеют весьма малые размеры и плохо оседают, необходимо создать условия для их укрупнения с целью затем максимально полно выделить их из воды методом отстаивания.

Основным способом укрупнения присутствующих в исходной воде загрязнений, является коагуляция с последующей флокуляцией. Коагулянт, это соль как правило алюминия или железа, которая при введении её в воду гидролизуется с образованием нерастворимых хлопьев гидроксида железа или алюминия. Образующиеся хлопья адсорбируют на своей поверхности частицы загрязнений, присутствующие в воде и далее подвергаются обработке флокулянтом. В данном случае в качестве коагулянта используется хлорид железа (III), т.к. рабочий диапазон рН железных коагулянтов, существенно шире, чем алюминиевых которые работают только в нейтральных средах, а при рН более 8,0-8,4 переходят в растворимые алюминаты.

Коагулянт дозируется в 1-ю камеру реактора КХ. Реактор представляет собой прямоугольный в плане резервуар, разделённый на 3 секции, каждая секция оборудована мешалкой. В 1-ой секции установлена высокоскоростная мешалка и в эту же секцию подаётся раствор коагулянта – FeCl 3 . Задача 1-ой камеры максимально быстро и равномерно распределить вводимый коагулянт в потоке исходной воды.

Вторая и третья камеры реактора КР оборудованы низкоскоростными мешалками и рассчитаны на время пребывания 10-12 минут каждая. Во вторую камеру вводится флокулянт. Вторая и третья камеры предназначены для обеспечения достаточного времени контакта исходной воды и свежеобразованных хлопьев коагулянта с целью завершения процесса сорбции загрязнений и для формирования крупных устойчивых хлопьев коагулянта и флокулянта.

Флокулянты, это высокомолекулярные вещества на основе полиакриламида с молекулярной массой 16 – 22 млн. Дальтон, несущие на своей матрице отрицательные заряды. Как правило молекула флокулянта линейная. Задача флокулянта – укрупнение хлопьев гидроксида железа путём образования полимерных мостиков между отдельными хлопьями коагулянта, что способствует укрупнения хлопьев и последующему их более полному выделению в отстойниках.

Далее сточная вода перетекает в промежуточную ёмкость, откуда насосами подаётся тонкослойные отстойники, где происходит выделение хлопьев гидроксида железа с сорбированными загрязнениями, укрупнённых в процессе флокуляции.

Насосы, перекачивающие сформированный осадок из промежуточной ёмкости в отстойники являются винтовыми насосами, т.к. основная задача данных насосов подать хлопья коагулянта-флокулянта в отстойник, не разрушив их структуру, что характерно для центробежных насосов.

Отстойники с тонкослойными модулями состоят из большого количества наклонных трубчатых каналов, что даёт увеличение площади осаждения по отношению к площади основания. Для получения оптимальных результатов при эксплуатации отстойника необходимо надлежащим образом рассчитывать высоту, угол наклона и тип модулей, а также гидравлическую нагрузку. Отстойники трубчатого типа работают на основе принципа противотока, то есть потоки очищенной воды поднимаются наверх к выпуску, а осадок соскальзывает вниз по наклонным каналам в илосборник, откуда он удаляется с помощью скреперов и насосов.

Тонкослойный отстойник предназначен для осветления сточных вод после реагентной обработки. Отстойник представляет собой стальную сварную емкость, изготовленную стали, установленную вертикально на раму, выполненную из профиля. Внутри отстойника установлен сотоблок, представляющий собой клеёную конструкцию, выполненную из полимерных листов толщиной 3 мм. Сотоблок свободно опускается в отстойник и опирается на уголки, приваренные к стенкам. В нижней части отстойника расположена осадочная часть, объём осадочной части рассчитан на сбор осадка в течение 6-8 часов, однако шлам в осадочной части не задерживается, а выводится пневматическими мембранными насосами в сборники шлама, часть шлама при этом возвращается во вторую секцию реактора КР. Для контроля качества осветлённой воды, в отстойнике предусмотрена установка мутномера.

Тонкослойный отстойник. Вид серху.

Осадок выводимый из отстойника собирается в шламовых емкостях, откуда пневматическим мембранными насосами подаётся на обезвоживание.

Для обезвоживания осадка предлагается использование камерного фильтр-пресса. После процесса обезвоживания ориентировочная влажность осадка 60-70%.


Внешний вид камерного фильтр-пресса.

На сегодняшний день водоподготовка в энергетике остается важным вопросом отрасли. Водя является главным источником на ТЭС, включая ТЭЦ, к которому предъявлены повышенные требования. Наша страна расположена в холодной климатической зоне, зимой случаются сильные морозы. Поэтому ТЭС являются неотъемлемой частью комфортной жизни людей. ТЭЦ, паровые и газовые котельные страдают от жесткой воды, выводящей из строя дорогостоящее оборудование. Для более четкого понимания, разберемся с принципами работы ТЭЦ.

Принцип работы ТЭЦ

ТЭЦ (теплоэлектромагистраль) считается разновидностью ТЭС. Она генерирует электрическую энергию и является источником тепловой в системе теплоснабжения. С ТЭЦ в дома людей и на предприятия промышленности поступает горячая вода и пар.

Принцип ее работы схож с конденсационной электростанцией. Существует только одно важное отличие: часть тепла можно посылать на другие потребности. Количество отобранного пара регулируется на предприятии. Тепловая турбина определяет способ сбора энергии. В подогревателях собирают отделенный пар. Затем энергия передается воде, которая движется по системе. Она передает энергию в пиковые водонагревательные котельные и теплопункты.


Водоподготовка может иметь два графика нагрузки:
  • тепловая;
  • электрическая.

Если основной является тепловая нагрузка, тогда электрическая ей подчиняется. Если установлена электрическая нагрузка, то тепловая может даже отсутствовать. Возможен вариант совмещенной нагрузки, что дает возможность использовать остаточное тепло для отопления. Такие ТЭЦ обладают КПД 80%.

При возведении ТЭЦ учитывается отсутствие передачи тепла на большие расстоянии. Поэтому она располагается на территории города.

Проблемы ТЭЦ

Главный недостаток производства энергии на ТЭС – образование твердого осадка, выпадающего при нагреве воды. Что бы очистить систему, потребуется остановка и разборка всего оборудования. Накипь убирают на всех поворотах и в узких отверстиях. Кроме накипи, слаженной работе будут препятствовать коррозия, бактерии и прочее.

Накипь


Основной недостаток накипи – снижение теплопроводности. Даже ее незначительный слой приводит к большому расходу топлива. Постоянно удалять накипь не возможно. Допускается только ежемесячная чистка, которая несет убытки от простоя и портит поверхность оборудования. Количество потребляемого топлива будет увеличиваться, а оборудование будет быстрее выходить из строя.

Как определить, когда производить очистку? Оборудование сообщит само: сработают системы защиты от перегрева. Если не убрать накипь, в дальнейшем теплообменники и котлы не будут работать, образуются свищи или произойдет взрыв. Все дорогостоящее оборудование выйдет из строя без возможности восстановить его.

Коррозия

Главная причина коррозии – кислород. Циркуляционная вода должна иметь его на минимальном уровне – 0,02 мг/л. Если кислорода достаточно, то вероятность образовании на поверхности коррозии будет увеличиваться с ростом количества солей, особенно сульфатов и хлоридов.

Большие ТЭЦ имеют деаэраторные установки. На небольших установках используют корректировочные химические продукты. Значение pH воды должен лежать в диапазоне 9,5-10,0. С ростом pH происходит снижение растворимости магнетита. Особенно важно, если в системе присутствуют латунные или медные детали.

Пластик – источник локального выброса кислорода . Современные системы стараются избегать гибких пластиковых труб или создают специальные барьеры для кислорода.

Бактерии


Бактерии влияют на качество используемой воды и образуют некоторые виды коррозии (бактерии на металле и бактерии, снижающие сульфаты). Признаки роста бактерий:
  • специфический запах циркуляционной воды;
  • отклонение содержания химических веществ при дозировании;
  • коррозия медных и латунных компонентов, а так же батарей.

Бактерии поступают с грязью из почвы или при ремонте. Системы и нижняя часть батареи обладают благоприятными условиями для их роста. Дезинфекция проводится при полном отключении системы.

Водоподготовка для ТЭЦ

Справиться с перечисленными проблемами поможет водоподготовка в энергетике. На ТЭС устанавливают множество фильтров. Основная задача – найти оптимальное сочетание разных фильтров. Вода на выходе должна быть смягченной и обессоленной.

Ионообменная установка


Самый распространенный фильтр. Она представляет собой высокий цилиндрический бак с дополнительным регенерационным баком для фильтра. Круглосуточная работа ТЭЦ нуждается ионообменной установки с несколькими ступенями и фильтрами. Каждый из них имеет свой бак для восстановления. Вся система имеет общий контроллер (блок управления). Он следит за параметрами работы каждого фильтра: количество воды, скорость очистки, время очистки. Контроллер не пропускает воду через фильтры с полными картриджи, а посылает ее на другие. Грязные картриджи вынимаются и отправляются в бак для восстановления.

Картридж первоначально наполнен смолой со слабым натрием. При прохождении жесткой воды происходят химические реакции: сильные соли заменяются слабым натрием. Со временем в картридже скапливаются соли жесткости – следует провести его регенерацию.

В восстановительном баке растворены соли высокой степени. Выходит сильно насыщенный раствор соли (более 8-10%), который удаляет из картриджа соли жесткости. Сильносоленые отходы дополнительно очищаются, а потом утилизируются по специальному разрешению.

Плюсом установки является высокая скорость очистки. К минусам относятся дорогостоящее обслуживание установки, высокая стоимость соленых таблеток и затраты на утилизацию.

Электромагнитный умягчитель воды


Так же распространен на ТЭЦ. Основными элементами системы являются:
  • сильные постоянные магниты из редкоземельных металлов;
  • плата;
  • электрический процессор.

Перечисленные элементы создают сильное электромагнитное поле. С противоположных сторон прибор имеет намотанную проводку, по которой идут волны. Каждый провод наматывают более 7 раз на трубу. Во время эксплуатации следят, чтобы вода не контактировала с проводкой. Концы проводов изолируют.

Вода проходит по трубе и облучается электромагнитными волнами. Соли жесткости трансформируются в острые иголки, которым неудобно «прилипать» к поверхности оборудования из-за маленькой площади контакта. Дополнительно иголки качественно и тонко очищают поверхность от старого налета.

Основные преимущества:

  • самообслуживание;
  • не надо ухаживать;
  • срок эксплуатации более 25 лет;
  • отсутствие дополнительных затрат.

Электромагнитный умягчитель работает со всеми поверхностями. Основа установки – монтаж на чистый участок трубопровода.

Обратный осмос

На производстве подпиточной воды система обратного осмоса незаменима. Она единственная может очистить воду на 100%. В ней используется система различных мембран, обеспечивающие необходимые характеристики воды. Минусом становится отсутствие возможности самостоятельного использования. Установку обратного осмоса обязательно нужно дополнять умягчителями воды, что влияет на стоимость системы.

Только полная система водоподготовки и водоочистки гарантирует стопроцентный результат и компенсирует высокую стоимость оборудования.

Способ обработки воды оказывает сильное влияние на работу теплоснабжения. От него зависят экономические показатели эксплуатации и защитная функция системы. При строительстве или плановом ремонте ТЭЦ нужно уделять особое значение водообработке.

Loading...Loading...